sqlite3/ext/session/sqlite3session.c

6030 lines
191 KiB
C
Raw Normal View History

2023-06-27 18:34:42 +08:00
#if defined(SQLITE_ENABLE_SESSION) && defined(SQLITE_ENABLE_PREUPDATE_HOOK)
#include "sqlite3session.h"
#include <assert.h>
#include <string.h>
#ifndef SQLITE_AMALGAMATION
# include "sqliteInt.h"
# include "vdbeInt.h"
#endif
typedef struct SessionTable SessionTable;
typedef struct SessionChange SessionChange;
typedef struct SessionBuffer SessionBuffer;
typedef struct SessionInput SessionInput;
/*
** Minimum chunk size used by streaming versions of functions.
*/
#ifndef SESSIONS_STRM_CHUNK_SIZE
# ifdef SQLITE_TEST
# define SESSIONS_STRM_CHUNK_SIZE 64
# else
# define SESSIONS_STRM_CHUNK_SIZE 1024
# endif
#endif
#define SESSIONS_ROWID "_rowid_"
static int sessions_strm_chunk_size = SESSIONS_STRM_CHUNK_SIZE;
typedef struct SessionHook SessionHook;
struct SessionHook {
void *pCtx;
int (*xOld)(void*,int,sqlite3_value**);
int (*xNew)(void*,int,sqlite3_value**);
int (*xCount)(void*);
int (*xDepth)(void*);
};
/*
** Session handle structure.
*/
struct sqlite3_session {
sqlite3 *db; /* Database handle session is attached to */
char *zDb; /* Name of database session is attached to */
int bEnableSize; /* True if changeset_size() enabled */
int bEnable; /* True if currently recording */
int bIndirect; /* True if all changes are indirect */
int bAutoAttach; /* True to auto-attach tables */
int bImplicitPK; /* True to handle tables with implicit PK */
int rc; /* Non-zero if an error has occurred */
void *pFilterCtx; /* First argument to pass to xTableFilter */
int (*xTableFilter)(void *pCtx, const char *zTab);
i64 nMalloc; /* Number of bytes of data allocated */
i64 nMaxChangesetSize;
sqlite3_value *pZeroBlob; /* Value containing X'' */
sqlite3_session *pNext; /* Next session object on same db. */
SessionTable *pTable; /* List of attached tables */
SessionHook hook; /* APIs to grab new and old data with */
};
/*
** Instances of this structure are used to build strings or binary records.
*/
struct SessionBuffer {
u8 *aBuf; /* Pointer to changeset buffer */
int nBuf; /* Size of buffer aBuf */
int nAlloc; /* Size of allocation containing aBuf */
};
/*
** An object of this type is used internally as an abstraction for
** input data. Input data may be supplied either as a single large buffer
** (e.g. sqlite3changeset_start()) or using a stream function (e.g.
** sqlite3changeset_start_strm()).
*/
struct SessionInput {
int bNoDiscard; /* If true, do not discard in InputBuffer() */
int iCurrent; /* Offset in aData[] of current change */
int iNext; /* Offset in aData[] of next change */
u8 *aData; /* Pointer to buffer containing changeset */
int nData; /* Number of bytes in aData */
SessionBuffer buf; /* Current read buffer */
int (*xInput)(void*, void*, int*); /* Input stream call (or NULL) */
void *pIn; /* First argument to xInput */
int bEof; /* Set to true after xInput finished */
};
/*
** Structure for changeset iterators.
*/
struct sqlite3_changeset_iter {
SessionInput in; /* Input buffer or stream */
SessionBuffer tblhdr; /* Buffer to hold apValue/zTab/abPK/ */
int bPatchset; /* True if this is a patchset */
int bInvert; /* True to invert changeset */
int bSkipEmpty; /* Skip noop UPDATE changes */
int rc; /* Iterator error code */
sqlite3_stmt *pConflict; /* Points to conflicting row, if any */
char *zTab; /* Current table */
int nCol; /* Number of columns in zTab */
int op; /* Current operation */
int bIndirect; /* True if current change was indirect */
u8 *abPK; /* Primary key array */
sqlite3_value **apValue; /* old.* and new.* values */
};
/*
** Each session object maintains a set of the following structures, one
** for each table the session object is monitoring. The structures are
** stored in a linked list starting at sqlite3_session.pTable.
**
** The keys of the SessionTable.aChange[] hash table are all rows that have
** been modified in any way since the session object was attached to the
** table.
**
** The data associated with each hash-table entry is a structure containing
** a subset of the initial values that the modified row contained at the
** start of the session. Or no initial values if the row was inserted.
*/
struct SessionTable {
SessionTable *pNext;
char *zName; /* Local name of table */
int nCol; /* Number of columns in table zName */
int bStat1; /* True if this is sqlite_stat1 */
int bRowid; /* True if this table uses rowid for PK */
const char **azCol; /* Column names */
u8 *abPK; /* Array of primary key flags */
int nEntry; /* Total number of entries in hash table */
int nChange; /* Size of apChange[] array */
SessionChange **apChange; /* Hash table buckets */
};
/*
** RECORD FORMAT:
**
** The following record format is similar to (but not compatible with) that
** used in SQLite database files. This format is used as part of the
** change-set binary format, and so must be architecture independent.
**
** Unlike the SQLite database record format, each field is self-contained -
** there is no separation of header and data. Each field begins with a
** single byte describing its type, as follows:
**
** 0x00: Undefined value.
** 0x01: Integer value.
** 0x02: Real value.
** 0x03: Text value.
** 0x04: Blob value.
** 0x05: SQL NULL value.
**
** Note that the above match the definitions of SQLITE_INTEGER, SQLITE_TEXT
** and so on in sqlite3.h. For undefined and NULL values, the field consists
** only of the single type byte. For other types of values, the type byte
** is followed by:
**
** Text values:
** A varint containing the number of bytes in the value (encoded using
** UTF-8). Followed by a buffer containing the UTF-8 representation
** of the text value. There is no nul terminator.
**
** Blob values:
** A varint containing the number of bytes in the value, followed by
** a buffer containing the value itself.
**
** Integer values:
** An 8-byte big-endian integer value.
**
** Real values:
** An 8-byte big-endian IEEE 754-2008 real value.
**
** Varint values are encoded in the same way as varints in the SQLite
** record format.
**
** CHANGESET FORMAT:
**
** A changeset is a collection of DELETE, UPDATE and INSERT operations on
** one or more tables. Operations on a single table are grouped together,
** but may occur in any order (i.e. deletes, updates and inserts are all
** mixed together).
**
** Each group of changes begins with a table header:
**
** 1 byte: Constant 0x54 (capital 'T')
** Varint: Number of columns in the table.
** nCol bytes: 0x01 for PK columns, 0x00 otherwise.
** N bytes: Unqualified table name (encoded using UTF-8). Nul-terminated.
**
** Followed by one or more changes to the table.
**
** 1 byte: Either SQLITE_INSERT (0x12), UPDATE (0x17) or DELETE (0x09).
** 1 byte: The "indirect-change" flag.
** old.* record: (delete and update only)
** new.* record: (insert and update only)
**
** The "old.*" and "new.*" records, if present, are N field records in the
** format described above under "RECORD FORMAT", where N is the number of
** columns in the table. The i'th field of each record is associated with
** the i'th column of the table, counting from left to right in the order
** in which columns were declared in the CREATE TABLE statement.
**
** The new.* record that is part of each INSERT change contains the values
** that make up the new row. Similarly, the old.* record that is part of each
** DELETE change contains the values that made up the row that was deleted
** from the database. In the changeset format, the records that are part
** of INSERT or DELETE changes never contain any undefined (type byte 0x00)
** fields.
**
** Within the old.* record associated with an UPDATE change, all fields
** associated with table columns that are not PRIMARY KEY columns and are
** not modified by the UPDATE change are set to "undefined". Other fields
** are set to the values that made up the row before the UPDATE that the
** change records took place. Within the new.* record, fields associated
** with table columns modified by the UPDATE change contain the new
** values. Fields associated with table columns that are not modified
** are set to "undefined".
**
** PATCHSET FORMAT:
**
** A patchset is also a collection of changes. It is similar to a changeset,
** but leaves undefined those fields that are not useful if no conflict
** resolution is required when applying the changeset.
**
** Each group of changes begins with a table header:
**
** 1 byte: Constant 0x50 (capital 'P')
** Varint: Number of columns in the table.
** nCol bytes: 0x01 for PK columns, 0x00 otherwise.
** N bytes: Unqualified table name (encoded using UTF-8). Nul-terminated.
**
** Followed by one or more changes to the table.
**
** 1 byte: Either SQLITE_INSERT (0x12), UPDATE (0x17) or DELETE (0x09).
** 1 byte: The "indirect-change" flag.
** single record: (PK fields for DELETE, PK and modified fields for UPDATE,
** full record for INSERT).
**
** As in the changeset format, each field of the single record that is part
** of a patchset change is associated with the correspondingly positioned
** table column, counting from left to right within the CREATE TABLE
** statement.
**
** For a DELETE change, all fields within the record except those associated
** with PRIMARY KEY columns are omitted. The PRIMARY KEY fields contain the
** values identifying the row to delete.
**
** For an UPDATE change, all fields except those associated with PRIMARY KEY
** columns and columns that are modified by the UPDATE are set to "undefined".
** PRIMARY KEY fields contain the values identifying the table row to update,
** and fields associated with modified columns contain the new column values.
**
** The records associated with INSERT changes are in the same format as for
** changesets. It is not possible for a record associated with an INSERT
** change to contain a field set to "undefined".
**
** REBASE BLOB FORMAT:
**
** A rebase blob may be output by sqlite3changeset_apply_v2() and its
** streaming equivalent for use with the sqlite3_rebaser APIs to rebase
** existing changesets. A rebase blob contains one entry for each conflict
** resolved using either the OMIT or REPLACE strategies within the apply_v2()
** call.
**
** The format used for a rebase blob is very similar to that used for
** changesets. All entries related to a single table are grouped together.
**
** Each group of entries begins with a table header in changeset format:
**
** 1 byte: Constant 0x54 (capital 'T')
** Varint: Number of columns in the table.
** nCol bytes: 0x01 for PK columns, 0x00 otherwise.
** N bytes: Unqualified table name (encoded using UTF-8). Nul-terminated.
**
** Followed by one or more entries associated with the table.
**
** 1 byte: Either SQLITE_INSERT (0x12), DELETE (0x09).
** 1 byte: Flag. 0x01 for REPLACE, 0x00 for OMIT.
** record: (in the record format defined above).
**
** In a rebase blob, the first field is set to SQLITE_INSERT if the change
** that caused the conflict was an INSERT or UPDATE, or to SQLITE_DELETE if
** it was a DELETE. The second field is set to 0x01 if the conflict
** resolution strategy was REPLACE, or 0x00 if it was OMIT.
**
** If the change that caused the conflict was a DELETE, then the single
** record is a copy of the old.* record from the original changeset. If it
** was an INSERT, then the single record is a copy of the new.* record. If
** the conflicting change was an UPDATE, then the single record is a copy
** of the new.* record with the PK fields filled in based on the original
** old.* record.
*/
/*
** For each row modified during a session, there exists a single instance of
** this structure stored in a SessionTable.aChange[] hash table.
*/
struct SessionChange {
u8 op; /* One of UPDATE, DELETE, INSERT */
u8 bIndirect; /* True if this change is "indirect" */
int nMaxSize; /* Max size of eventual changeset record */
int nRecord; /* Number of bytes in buffer aRecord[] */
u8 *aRecord; /* Buffer containing old.* record */
SessionChange *pNext; /* For hash-table collisions */
};
/*
** Write a varint with value iVal into the buffer at aBuf. Return the
** number of bytes written.
*/
static int sessionVarintPut(u8 *aBuf, int iVal){
return putVarint32(aBuf, iVal);
}
/*
** Return the number of bytes required to store value iVal as a varint.
*/
static int sessionVarintLen(int iVal){
return sqlite3VarintLen(iVal);
}
/*
** Read a varint value from aBuf[] into *piVal. Return the number of
** bytes read.
*/
static int sessionVarintGet(u8 *aBuf, int *piVal){
return getVarint32(aBuf, *piVal);
}
/* Load an unaligned and unsigned 32-bit integer */
#define SESSION_UINT32(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
/*
** Read a 64-bit big-endian integer value from buffer aRec[]. Return
** the value read.
*/
static sqlite3_int64 sessionGetI64(u8 *aRec){
u64 x = SESSION_UINT32(aRec);
u32 y = SESSION_UINT32(aRec+4);
x = (x<<32) + y;
return (sqlite3_int64)x;
}
/*
** Write a 64-bit big-endian integer value to the buffer aBuf[].
*/
static void sessionPutI64(u8 *aBuf, sqlite3_int64 i){
aBuf[0] = (i>>56) & 0xFF;
aBuf[1] = (i>>48) & 0xFF;
aBuf[2] = (i>>40) & 0xFF;
aBuf[3] = (i>>32) & 0xFF;
aBuf[4] = (i>>24) & 0xFF;
aBuf[5] = (i>>16) & 0xFF;
aBuf[6] = (i>> 8) & 0xFF;
aBuf[7] = (i>> 0) & 0xFF;
}
/*
** This function is used to serialize the contents of value pValue (see
** comment titled "RECORD FORMAT" above).
**
** If it is non-NULL, the serialized form of the value is written to
** buffer aBuf. *pnWrite is set to the number of bytes written before
** returning. Or, if aBuf is NULL, the only thing this function does is
** set *pnWrite.
**
** If no error occurs, SQLITE_OK is returned. Or, if an OOM error occurs
** within a call to sqlite3_value_text() (may fail if the db is utf-16))
** SQLITE_NOMEM is returned.
*/
static int sessionSerializeValue(
u8 *aBuf, /* If non-NULL, write serialized value here */
sqlite3_value *pValue, /* Value to serialize */
sqlite3_int64 *pnWrite /* IN/OUT: Increment by bytes written */
){
int nByte; /* Size of serialized value in bytes */
if( pValue ){
int eType; /* Value type (SQLITE_NULL, TEXT etc.) */
eType = sqlite3_value_type(pValue);
if( aBuf ) aBuf[0] = eType;
switch( eType ){
case SQLITE_NULL:
nByte = 1;
break;
case SQLITE_INTEGER:
case SQLITE_FLOAT:
if( aBuf ){
/* TODO: SQLite does something special to deal with mixed-endian
** floating point values (e.g. ARM7). This code probably should
** too. */
u64 i;
if( eType==SQLITE_INTEGER ){
i = (u64)sqlite3_value_int64(pValue);
}else{
double r;
assert( sizeof(double)==8 && sizeof(u64)==8 );
r = sqlite3_value_double(pValue);
memcpy(&i, &r, 8);
}
sessionPutI64(&aBuf[1], i);
}
nByte = 9;
break;
default: {
u8 *z;
int n;
int nVarint;
assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
if( eType==SQLITE_TEXT ){
z = (u8 *)sqlite3_value_text(pValue);
}else{
z = (u8 *)sqlite3_value_blob(pValue);
}
n = sqlite3_value_bytes(pValue);
if( z==0 && (eType!=SQLITE_BLOB || n>0) ) return SQLITE_NOMEM;
nVarint = sessionVarintLen(n);
if( aBuf ){
sessionVarintPut(&aBuf[1], n);
if( n>0 ) memcpy(&aBuf[nVarint + 1], z, n);
}
nByte = 1 + nVarint + n;
break;
}
}
}else{
nByte = 1;
if( aBuf ) aBuf[0] = '\0';
}
if( pnWrite ) *pnWrite += nByte;
return SQLITE_OK;
}
/*
** Allocate and return a pointer to a buffer nByte bytes in size. If
** pSession is not NULL, increase the sqlite3_session.nMalloc variable
** by the number of bytes allocated.
*/
static void *sessionMalloc64(sqlite3_session *pSession, i64 nByte){
void *pRet = sqlite3_malloc64(nByte);
if( pSession ) pSession->nMalloc += sqlite3_msize(pRet);
return pRet;
}
/*
** Free buffer pFree, which must have been allocated by an earlier
** call to sessionMalloc64(). If pSession is not NULL, decrease the
** sqlite3_session.nMalloc counter by the number of bytes freed.
*/
static void sessionFree(sqlite3_session *pSession, void *pFree){
if( pSession ) pSession->nMalloc -= sqlite3_msize(pFree);
sqlite3_free(pFree);
}
/*
** This macro is used to calculate hash key values for data structures. In
** order to use this macro, the entire data structure must be represented
** as a series of unsigned integers. In order to calculate a hash-key value
** for a data structure represented as three such integers, the macro may
** then be used as follows:
**
** int hash_key_value;
** hash_key_value = HASH_APPEND(0, <value 1>);
** hash_key_value = HASH_APPEND(hash_key_value, <value 2>);
** hash_key_value = HASH_APPEND(hash_key_value, <value 3>);
**
** In practice, the data structures this macro is used for are the primary
** key values of modified rows.
*/
#define HASH_APPEND(hash, add) ((hash) << 3) ^ (hash) ^ (unsigned int)(add)
/*
** Append the hash of the 64-bit integer passed as the second argument to the
** hash-key value passed as the first. Return the new hash-key value.
*/
static unsigned int sessionHashAppendI64(unsigned int h, i64 i){
h = HASH_APPEND(h, i & 0xFFFFFFFF);
return HASH_APPEND(h, (i>>32)&0xFFFFFFFF);
}
/*
** Append the hash of the blob passed via the second and third arguments to
** the hash-key value passed as the first. Return the new hash-key value.
*/
static unsigned int sessionHashAppendBlob(unsigned int h, int n, const u8 *z){
int i;
for(i=0; i<n; i++) h = HASH_APPEND(h, z[i]);
return h;
}
/*
** Append the hash of the data type passed as the second argument to the
** hash-key value passed as the first. Return the new hash-key value.
*/
static unsigned int sessionHashAppendType(unsigned int h, int eType){
return HASH_APPEND(h, eType);
}
/*
** This function may only be called from within a pre-update callback.
** It calculates a hash based on the primary key values of the old.* or
** new.* row currently available and, assuming no error occurs, writes it to
** *piHash before returning. If the primary key contains one or more NULL
** values, *pbNullPK is set to true before returning.
**
** If an error occurs, an SQLite error code is returned and the final values
** of *piHash asn *pbNullPK are undefined. Otherwise, SQLITE_OK is returned
** and the output variables are set as described above.
*/
static int sessionPreupdateHash(
sqlite3_session *pSession, /* Session object that owns pTab */
i64 iRowid,
SessionTable *pTab, /* Session table handle */
int bNew, /* True to hash the new.* PK */
int *piHash, /* OUT: Hash value */
int *pbNullPK /* OUT: True if there are NULL values in PK */
){
unsigned int h = 0; /* Hash value to return */
int i; /* Used to iterate through columns */
if( pTab->bRowid ){
assert( pTab->nCol-1==pSession->hook.xCount(pSession->hook.pCtx) );
h = sessionHashAppendI64(h, iRowid);
}else{
assert( *pbNullPK==0 );
assert( pTab->nCol==pSession->hook.xCount(pSession->hook.pCtx) );
for(i=0; i<pTab->nCol; i++){
if( pTab->abPK[i] ){
int rc;
int eType;
sqlite3_value *pVal;
if( bNew ){
rc = pSession->hook.xNew(pSession->hook.pCtx, i, &pVal);
}else{
rc = pSession->hook.xOld(pSession->hook.pCtx, i, &pVal);
}
if( rc!=SQLITE_OK ) return rc;
eType = sqlite3_value_type(pVal);
h = sessionHashAppendType(h, eType);
if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
i64 iVal;
if( eType==SQLITE_INTEGER ){
iVal = sqlite3_value_int64(pVal);
}else{
double rVal = sqlite3_value_double(pVal);
assert( sizeof(iVal)==8 && sizeof(rVal)==8 );
memcpy(&iVal, &rVal, 8);
}
h = sessionHashAppendI64(h, iVal);
}else if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){
const u8 *z;
int n;
if( eType==SQLITE_TEXT ){
z = (const u8 *)sqlite3_value_text(pVal);
}else{
z = (const u8 *)sqlite3_value_blob(pVal);
}
n = sqlite3_value_bytes(pVal);
if( !z && (eType!=SQLITE_BLOB || n>0) ) return SQLITE_NOMEM;
h = sessionHashAppendBlob(h, n, z);
}else{
assert( eType==SQLITE_NULL );
assert( pTab->bStat1==0 || i!=1 );
*pbNullPK = 1;
}
}
}
}
*piHash = (h % pTab->nChange);
return SQLITE_OK;
}
/*
** The buffer that the argument points to contains a serialized SQL value.
** Return the number of bytes of space occupied by the value (including
** the type byte).
*/
static int sessionSerialLen(u8 *a){
int e = *a;
int n;
if( e==0 || e==0xFF ) return 1;
if( e==SQLITE_NULL ) return 1;
if( e==SQLITE_INTEGER || e==SQLITE_FLOAT ) return 9;
return sessionVarintGet(&a[1], &n) + 1 + n;
}
/*
** Based on the primary key values stored in change aRecord, calculate a
** hash key. Assume the has table has nBucket buckets. The hash keys
** calculated by this function are compatible with those calculated by
** sessionPreupdateHash().
**
** The bPkOnly argument is non-zero if the record at aRecord[] is from
** a patchset DELETE. In this case the non-PK fields are omitted entirely.
*/
static unsigned int sessionChangeHash(
SessionTable *pTab, /* Table handle */
int bPkOnly, /* Record consists of PK fields only */
u8 *aRecord, /* Change record */
int nBucket /* Assume this many buckets in hash table */
){
unsigned int h = 0; /* Value to return */
int i; /* Used to iterate through columns */
u8 *a = aRecord; /* Used to iterate through change record */
for(i=0; i<pTab->nCol; i++){
int eType = *a;
int isPK = pTab->abPK[i];
if( bPkOnly && isPK==0 ) continue;
/* It is not possible for eType to be SQLITE_NULL here. The session
** module does not record changes for rows with NULL values stored in
** primary key columns. */
assert( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT
|| eType==SQLITE_TEXT || eType==SQLITE_BLOB
|| eType==SQLITE_NULL || eType==0
);
assert( !isPK || (eType!=0 && eType!=SQLITE_NULL) );
if( isPK ){
a++;
h = sessionHashAppendType(h, eType);
if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
h = sessionHashAppendI64(h, sessionGetI64(a));
a += 8;
}else{
int n;
a += sessionVarintGet(a, &n);
h = sessionHashAppendBlob(h, n, a);
a += n;
}
}else{
a += sessionSerialLen(a);
}
}
return (h % nBucket);
}
/*
** Arguments aLeft and aRight are pointers to change records for table pTab.
** This function returns true if the two records apply to the same row (i.e.
** have the same values stored in the primary key columns), or false
** otherwise.
*/
static int sessionChangeEqual(
SessionTable *pTab, /* Table used for PK definition */
int bLeftPkOnly, /* True if aLeft[] contains PK fields only */
u8 *aLeft, /* Change record */
int bRightPkOnly, /* True if aRight[] contains PK fields only */
u8 *aRight /* Change record */
){
u8 *a1 = aLeft; /* Cursor to iterate through aLeft */
u8 *a2 = aRight; /* Cursor to iterate through aRight */
int iCol; /* Used to iterate through table columns */
for(iCol=0; iCol<pTab->nCol; iCol++){
if( pTab->abPK[iCol] ){
int n1 = sessionSerialLen(a1);
int n2 = sessionSerialLen(a2);
if( n1!=n2 || memcmp(a1, a2, n1) ){
return 0;
}
a1 += n1;
a2 += n2;
}else{
if( bLeftPkOnly==0 ) a1 += sessionSerialLen(a1);
if( bRightPkOnly==0 ) a2 += sessionSerialLen(a2);
}
}
return 1;
}
/*
** Arguments aLeft and aRight both point to buffers containing change
** records with nCol columns. This function "merges" the two records into
** a single records which is written to the buffer at *paOut. *paOut is
** then set to point to one byte after the last byte written before
** returning.
**
** The merging of records is done as follows: For each column, if the
** aRight record contains a value for the column, copy the value from
** their. Otherwise, if aLeft contains a value, copy it. If neither
** record contains a value for a given column, then neither does the
** output record.
*/
static void sessionMergeRecord(
u8 **paOut,
int nCol,
u8 *aLeft,
u8 *aRight
){
u8 *a1 = aLeft; /* Cursor used to iterate through aLeft */
u8 *a2 = aRight; /* Cursor used to iterate through aRight */
u8 *aOut = *paOut; /* Output cursor */
int iCol; /* Used to iterate from 0 to nCol */
for(iCol=0; iCol<nCol; iCol++){
int n1 = sessionSerialLen(a1);
int n2 = sessionSerialLen(a2);
if( *a2 ){
memcpy(aOut, a2, n2);
aOut += n2;
}else{
memcpy(aOut, a1, n1);
aOut += n1;
}
a1 += n1;
a2 += n2;
}
*paOut = aOut;
}
/*
** This is a helper function used by sessionMergeUpdate().
**
** When this function is called, both *paOne and *paTwo point to a value
** within a change record. Before it returns, both have been advanced so
** as to point to the next value in the record.
**
** If, when this function is called, *paTwo points to a valid value (i.e.
** *paTwo[0] is not 0x00 - the "no value" placeholder), a copy of the *paTwo
** pointer is returned and *pnVal is set to the number of bytes in the
** serialized value. Otherwise, a copy of *paOne is returned and *pnVal
** set to the number of bytes in the value at *paOne. If *paOne points
** to the "no value" placeholder, *pnVal is set to 1. In other words:
**
** if( *paTwo is valid ) return *paTwo;
** return *paOne;
**
*/
static u8 *sessionMergeValue(
u8 **paOne, /* IN/OUT: Left-hand buffer pointer */
u8 **paTwo, /* IN/OUT: Right-hand buffer pointer */
int *pnVal /* OUT: Bytes in returned value */
){
u8 *a1 = *paOne;
u8 *a2 = *paTwo;
u8 *pRet = 0;
int n1;
assert( a1 );
if( a2 ){
int n2 = sessionSerialLen(a2);
if( *a2 ){
*pnVal = n2;
pRet = a2;
}
*paTwo = &a2[n2];
}
n1 = sessionSerialLen(a1);
if( pRet==0 ){
*pnVal = n1;
pRet = a1;
}
*paOne = &a1[n1];
return pRet;
}
/*
** This function is used by changeset_concat() to merge two UPDATE changes
** on the same row.
*/
static int sessionMergeUpdate(
u8 **paOut, /* IN/OUT: Pointer to output buffer */
SessionTable *pTab, /* Table change pertains to */
int bPatchset, /* True if records are patchset records */
u8 *aOldRecord1, /* old.* record for first change */
u8 *aOldRecord2, /* old.* record for second change */
u8 *aNewRecord1, /* new.* record for first change */
u8 *aNewRecord2 /* new.* record for second change */
){
u8 *aOld1 = aOldRecord1;
u8 *aOld2 = aOldRecord2;
u8 *aNew1 = aNewRecord1;
u8 *aNew2 = aNewRecord2;
u8 *aOut = *paOut;
int i;
if( bPatchset==0 ){
int bRequired = 0;
assert( aOldRecord1 && aNewRecord1 );
/* Write the old.* vector first. */
for(i=0; i<pTab->nCol; i++){
int nOld;
u8 *aOld;
int nNew;
u8 *aNew;
aOld = sessionMergeValue(&aOld1, &aOld2, &nOld);
aNew = sessionMergeValue(&aNew1, &aNew2, &nNew);
if( pTab->abPK[i] || nOld!=nNew || memcmp(aOld, aNew, nNew) ){
if( pTab->abPK[i]==0 ) bRequired = 1;
memcpy(aOut, aOld, nOld);
aOut += nOld;
}else{
*(aOut++) = '\0';
}
}
if( !bRequired ) return 0;
}
/* Write the new.* vector */
aOld1 = aOldRecord1;
aOld2 = aOldRecord2;
aNew1 = aNewRecord1;
aNew2 = aNewRecord2;
for(i=0; i<pTab->nCol; i++){
int nOld;
u8 *aOld;
int nNew;
u8 *aNew;
aOld = sessionMergeValue(&aOld1, &aOld2, &nOld);
aNew = sessionMergeValue(&aNew1, &aNew2, &nNew);
if( bPatchset==0
&& (pTab->abPK[i] || (nOld==nNew && 0==memcmp(aOld, aNew, nNew)))
){
*(aOut++) = '\0';
}else{
memcpy(aOut, aNew, nNew);
aOut += nNew;
}
}
*paOut = aOut;
return 1;
}
/*
** This function is only called from within a pre-update-hook callback.
** It determines if the current pre-update-hook change affects the same row
** as the change stored in argument pChange. If so, it returns true. Otherwise
** if the pre-update-hook does not affect the same row as pChange, it returns
** false.
*/
static int sessionPreupdateEqual(
sqlite3_session *pSession, /* Session object that owns SessionTable */
i64 iRowid, /* Rowid value if pTab->bRowid */
SessionTable *pTab, /* Table associated with change */
SessionChange *pChange, /* Change to compare to */
int op /* Current pre-update operation */
){
int iCol; /* Used to iterate through columns */
u8 *a = pChange->aRecord; /* Cursor used to scan change record */
if( pTab->bRowid ){
if( a[0]!=SQLITE_INTEGER ) return 0;
return sessionGetI64(&a[1])==iRowid;
}
assert( op==SQLITE_INSERT || op==SQLITE_UPDATE || op==SQLITE_DELETE );
for(iCol=0; iCol<pTab->nCol; iCol++){
if( !pTab->abPK[iCol] ){
a += sessionSerialLen(a);
}else{
sqlite3_value *pVal; /* Value returned by preupdate_new/old */
int rc; /* Error code from preupdate_new/old */
int eType = *a++; /* Type of value from change record */
/* The following calls to preupdate_new() and preupdate_old() can not
** fail. This is because they cache their return values, and by the
** time control flows to here they have already been called once from
** within sessionPreupdateHash(). The first two asserts below verify
** this (that the method has already been called). */
if( op==SQLITE_INSERT ){
/* assert( db->pPreUpdate->pNewUnpacked || db->pPreUpdate->aNew ); */
rc = pSession->hook.xNew(pSession->hook.pCtx, iCol, &pVal);
}else{
/* assert( db->pPreUpdate->pUnpacked ); */
rc = pSession->hook.xOld(pSession->hook.pCtx, iCol, &pVal);
}
assert( rc==SQLITE_OK );
if( sqlite3_value_type(pVal)!=eType ) return 0;
/* A SessionChange object never has a NULL value in a PK column */
assert( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT
|| eType==SQLITE_BLOB || eType==SQLITE_TEXT
);
if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
i64 iVal = sessionGetI64(a);
a += 8;
if( eType==SQLITE_INTEGER ){
if( sqlite3_value_int64(pVal)!=iVal ) return 0;
}else{
double rVal;
assert( sizeof(iVal)==8 && sizeof(rVal)==8 );
memcpy(&rVal, &iVal, 8);
if( sqlite3_value_double(pVal)!=rVal ) return 0;
}
}else{
int n;
const u8 *z;
a += sessionVarintGet(a, &n);
if( sqlite3_value_bytes(pVal)!=n ) return 0;
if( eType==SQLITE_TEXT ){
z = sqlite3_value_text(pVal);
}else{
z = sqlite3_value_blob(pVal);
}
if( n>0 && memcmp(a, z, n) ) return 0;
a += n;
}
}
}
return 1;
}
/*
** If required, grow the hash table used to store changes on table pTab
** (part of the session pSession). If a fatal OOM error occurs, set the
** session object to failed and return SQLITE_ERROR. Otherwise, return
** SQLITE_OK.
**
** It is possible that a non-fatal OOM error occurs in this function. In
** that case the hash-table does not grow, but SQLITE_OK is returned anyway.
** Growing the hash table in this case is a performance optimization only,
** it is not required for correct operation.
*/
static int sessionGrowHash(
sqlite3_session *pSession, /* For memory accounting. May be NULL */
int bPatchset,
SessionTable *pTab
){
if( pTab->nChange==0 || pTab->nEntry>=(pTab->nChange/2) ){
int i;
SessionChange **apNew;
sqlite3_int64 nNew = 2*(sqlite3_int64)(pTab->nChange ? pTab->nChange : 128);
apNew = (SessionChange**)sessionMalloc64(
pSession, sizeof(SessionChange*) * nNew
);
if( apNew==0 ){
if( pTab->nChange==0 ){
return SQLITE_ERROR;
}
return SQLITE_OK;
}
memset(apNew, 0, sizeof(SessionChange *) * nNew);
for(i=0; i<pTab->nChange; i++){
SessionChange *p;
SessionChange *pNext;
for(p=pTab->apChange[i]; p; p=pNext){
int bPkOnly = (p->op==SQLITE_DELETE && bPatchset);
int iHash = sessionChangeHash(pTab, bPkOnly, p->aRecord, nNew);
pNext = p->pNext;
p->pNext = apNew[iHash];
apNew[iHash] = p;
}
}
sessionFree(pSession, pTab->apChange);
pTab->nChange = nNew;
pTab->apChange = apNew;
}
return SQLITE_OK;
}
/*
** This function queries the database for the names of the columns of table
** zThis, in schema zDb.
**
** Otherwise, if they are not NULL, variable *pnCol is set to the number
** of columns in the database table and variable *pzTab is set to point to a
** nul-terminated copy of the table name. *pazCol (if not NULL) is set to
** point to an array of pointers to column names. And *pabPK (again, if not
** NULL) is set to point to an array of booleans - true if the corresponding
** column is part of the primary key.
**
** For example, if the table is declared as:
**
** CREATE TABLE tbl1(w, x, y, z, PRIMARY KEY(w, z));
**
** Then the four output variables are populated as follows:
**
** *pnCol = 4
** *pzTab = "tbl1"
** *pazCol = {"w", "x", "y", "z"}
** *pabPK = {1, 0, 0, 1}
**
** All returned buffers are part of the same single allocation, which must
** be freed using sqlite3_free() by the caller
*/
static int sessionTableInfo(
sqlite3_session *pSession, /* For memory accounting. May be NULL */
sqlite3 *db, /* Database connection */
const char *zDb, /* Name of attached database (e.g. "main") */
const char *zThis, /* Table name */
int *pnCol, /* OUT: number of columns */
const char **pzTab, /* OUT: Copy of zThis */
const char ***pazCol, /* OUT: Array of column names for table */
u8 **pabPK, /* OUT: Array of booleans - true for PK col */
int *pbRowid /* OUT: True if only PK is a rowid */
){
char *zPragma;
sqlite3_stmt *pStmt;
int rc;
sqlite3_int64 nByte;
int nDbCol = 0;
int nThis;
int i;
u8 *pAlloc = 0;
char **azCol = 0;
u8 *abPK = 0;
int bRowid = 0; /* Set to true to use rowid as PK */
assert( pazCol && pabPK );
nThis = sqlite3Strlen30(zThis);
if( nThis==12 && 0==sqlite3_stricmp("sqlite_stat1", zThis) ){
rc = sqlite3_table_column_metadata(db, zDb, zThis, 0, 0, 0, 0, 0, 0);
if( rc==SQLITE_OK ){
/* For sqlite_stat1, pretend that (tbl,idx) is the PRIMARY KEY. */
zPragma = sqlite3_mprintf(
"SELECT 0, 'tbl', '', 0, '', 1 UNION ALL "
"SELECT 1, 'idx', '', 0, '', 2 UNION ALL "
"SELECT 2, 'stat', '', 0, '', 0"
);
}else if( rc==SQLITE_ERROR ){
zPragma = sqlite3_mprintf("");
}else{
*pazCol = 0;
*pabPK = 0;
*pnCol = 0;
if( pzTab ) *pzTab = 0;
return rc;
}
}else{
zPragma = sqlite3_mprintf("PRAGMA '%q'.table_info('%q')", zDb, zThis);
}
if( !zPragma ){
*pazCol = 0;
*pabPK = 0;
*pnCol = 0;
if( pzTab ) *pzTab = 0;
return SQLITE_NOMEM;
}
rc = sqlite3_prepare_v2(db, zPragma, -1, &pStmt, 0);
sqlite3_free(zPragma);
if( rc!=SQLITE_OK ){
*pazCol = 0;
*pabPK = 0;
*pnCol = 0;
if( pzTab ) *pzTab = 0;
return rc;
}
nByte = nThis + 1;
bRowid = (pbRowid!=0);
while( SQLITE_ROW==sqlite3_step(pStmt) ){
nByte += sqlite3_column_bytes(pStmt, 1);
nDbCol++;
if( sqlite3_column_int(pStmt, 5) ) bRowid = 0;
}
if( nDbCol==0 ) bRowid = 0;
nDbCol += bRowid;
nByte += strlen(SESSIONS_ROWID);
rc = sqlite3_reset(pStmt);
if( rc==SQLITE_OK ){
nByte += nDbCol * (sizeof(const char *) + sizeof(u8) + 1);
pAlloc = sessionMalloc64(pSession, nByte);
if( pAlloc==0 ){
rc = SQLITE_NOMEM;
}
}
if( rc==SQLITE_OK ){
azCol = (char **)pAlloc;
pAlloc = (u8 *)&azCol[nDbCol];
abPK = (u8 *)pAlloc;
pAlloc = &abPK[nDbCol];
if( pzTab ){
memcpy(pAlloc, zThis, nThis+1);
*pzTab = (char *)pAlloc;
pAlloc += nThis+1;
}
i = 0;
if( bRowid ){
size_t nName = strlen(SESSIONS_ROWID);
memcpy(pAlloc, SESSIONS_ROWID, nName+1);
azCol[i] = (char*)pAlloc;
pAlloc += nName+1;
abPK[i] = 1;
i++;
}
while( SQLITE_ROW==sqlite3_step(pStmt) ){
int nName = sqlite3_column_bytes(pStmt, 1);
const unsigned char *zName = sqlite3_column_text(pStmt, 1);
if( zName==0 ) break;
memcpy(pAlloc, zName, nName+1);
azCol[i] = (char *)pAlloc;
pAlloc += nName+1;
abPK[i] = sqlite3_column_int(pStmt, 5);
i++;
}
rc = sqlite3_reset(pStmt);
}
/* If successful, populate the output variables. Otherwise, zero them and
** free any allocation made. An error code will be returned in this case.
*/
if( rc==SQLITE_OK ){
*pazCol = (const char **)azCol;
*pabPK = abPK;
*pnCol = nDbCol;
}else{
*pazCol = 0;
*pabPK = 0;
*pnCol = 0;
if( pzTab ) *pzTab = 0;
sessionFree(pSession, azCol);
}
if( pbRowid ) *pbRowid = bRowid;
sqlite3_finalize(pStmt);
return rc;
}
/*
** This function is only called from within a pre-update handler for a
** write to table pTab, part of session pSession. If this is the first
** write to this table, initalize the SessionTable.nCol, azCol[] and
** abPK[] arrays accordingly.
**
** If an error occurs, an error code is stored in sqlite3_session.rc and
** non-zero returned. Or, if no error occurs but the table has no primary
** key, sqlite3_session.rc is left set to SQLITE_OK and non-zero returned to
** indicate that updates on this table should be ignored. SessionTable.abPK
** is set to NULL in this case.
*/
static int sessionInitTable(sqlite3_session *pSession, SessionTable *pTab){
if( pTab->nCol==0 ){
u8 *abPK;
assert( pTab->azCol==0 || pTab->abPK==0 );
pSession->rc = sessionTableInfo(pSession, pSession->db, pSession->zDb,
pTab->zName, &pTab->nCol, 0, &pTab->azCol, &abPK,
(pSession->bImplicitPK ? &pTab->bRowid : 0)
);
if( pSession->rc==SQLITE_OK ){
int i;
for(i=0; i<pTab->nCol; i++){
if( abPK[i] ){
pTab->abPK = abPK;
break;
}
}
if( 0==sqlite3_stricmp("sqlite_stat1", pTab->zName) ){
pTab->bStat1 = 1;
}
if( pSession->bEnableSize ){
pSession->nMaxChangesetSize += (
1 + sessionVarintLen(pTab->nCol) + pTab->nCol + strlen(pTab->zName)+1
);
}
}
}
return (pSession->rc || pTab->abPK==0);
}
/*
** Versions of the four methods in object SessionHook for use with the
** sqlite_stat1 table. The purpose of this is to substitute a zero-length
** blob each time a NULL value is read from the "idx" column of the
** sqlite_stat1 table.
*/
typedef struct SessionStat1Ctx SessionStat1Ctx;
struct SessionStat1Ctx {
SessionHook hook;
sqlite3_session *pSession;
};
static int sessionStat1Old(void *pCtx, int iCol, sqlite3_value **ppVal){
SessionStat1Ctx *p = (SessionStat1Ctx*)pCtx;
sqlite3_value *pVal = 0;
int rc = p->hook.xOld(p->hook.pCtx, iCol, &pVal);
if( rc==SQLITE_OK && iCol==1 && sqlite3_value_type(pVal)==SQLITE_NULL ){
pVal = p->pSession->pZeroBlob;
}
*ppVal = pVal;
return rc;
}
static int sessionStat1New(void *pCtx, int iCol, sqlite3_value **ppVal){
SessionStat1Ctx *p = (SessionStat1Ctx*)pCtx;
sqlite3_value *pVal = 0;
int rc = p->hook.xNew(p->hook.pCtx, iCol, &pVal);
if( rc==SQLITE_OK && iCol==1 && sqlite3_value_type(pVal)==SQLITE_NULL ){
pVal = p->pSession->pZeroBlob;
}
*ppVal = pVal;
return rc;
}
static int sessionStat1Count(void *pCtx){
SessionStat1Ctx *p = (SessionStat1Ctx*)pCtx;
return p->hook.xCount(p->hook.pCtx);
}
static int sessionStat1Depth(void *pCtx){
SessionStat1Ctx *p = (SessionStat1Ctx*)pCtx;
return p->hook.xDepth(p->hook.pCtx);
}
static int sessionUpdateMaxSize(
int op,
sqlite3_session *pSession, /* Session object pTab is attached to */
SessionTable *pTab, /* Table that change applies to */
SessionChange *pC /* Update pC->nMaxSize */
){
i64 nNew = 2;
if( pC->op==SQLITE_INSERT ){
if( pTab->bRowid ) nNew += 9;
if( op!=SQLITE_DELETE ){
int ii;
for(ii=0; ii<pTab->nCol; ii++){
sqlite3_value *p = 0;
pSession->hook.xNew(pSession->hook.pCtx, ii, &p);
sessionSerializeValue(0, p, &nNew);
}
}
}else if( op==SQLITE_DELETE ){
nNew += pC->nRecord;
if( sqlite3_preupdate_blobwrite(pSession->db)>=0 ){
nNew += pC->nRecord;
}
}else{
int ii;
u8 *pCsr = pC->aRecord;
if( pTab->bRowid ){
nNew += 9 + 1;
pCsr += 9;
}
for(ii=pTab->bRowid; ii<pTab->nCol; ii++){
int bChanged = 1;
int nOld = 0;
int eType;
sqlite3_value *p = 0;
pSession->hook.xNew(pSession->hook.pCtx, ii-pTab->bRowid, &p);
if( p==0 ){
return SQLITE_NOMEM;
}
eType = *pCsr++;
switch( eType ){
case SQLITE_NULL:
bChanged = sqlite3_value_type(p)!=SQLITE_NULL;
break;
case SQLITE_FLOAT:
case SQLITE_INTEGER: {
if( eType==sqlite3_value_type(p) ){
sqlite3_int64 iVal = sessionGetI64(pCsr);
if( eType==SQLITE_INTEGER ){
bChanged = (iVal!=sqlite3_value_int64(p));
}else{
double dVal;
memcpy(&dVal, &iVal, 8);
bChanged = (dVal!=sqlite3_value_double(p));
}
}
nOld = 8;
pCsr += 8;
break;
}
default: {
int nByte;
nOld = sessionVarintGet(pCsr, &nByte);
pCsr += nOld;
nOld += nByte;
assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
if( eType==sqlite3_value_type(p)
&& nByte==sqlite3_value_bytes(p)
&& (nByte==0 || 0==memcmp(pCsr, sqlite3_value_blob(p), nByte))
){
bChanged = 0;
}
pCsr += nByte;
break;
}
}
if( bChanged && pTab->abPK[ii] ){
nNew = pC->nRecord + 2;
break;
}
if( bChanged ){
nNew += 1 + nOld;
sessionSerializeValue(0, p, &nNew);
}else if( pTab->abPK[ii] ){
nNew += 2 + nOld;
}else{
nNew += 2;
}
}
}
if( nNew>pC->nMaxSize ){
int nIncr = nNew - pC->nMaxSize;
pC->nMaxSize = nNew;
pSession->nMaxChangesetSize += nIncr;
}
return SQLITE_OK;
}
/*
** This function is only called from with a pre-update-hook reporting a
** change on table pTab (attached to session pSession). The type of change
** (UPDATE, INSERT, DELETE) is specified by the first argument.
**
** Unless one is already present or an error occurs, an entry is added
** to the changed-rows hash table associated with table pTab.
*/
static void sessionPreupdateOneChange(
int op, /* One of SQLITE_UPDATE, INSERT, DELETE */
i64 iRowid,
sqlite3_session *pSession, /* Session object pTab is attached to */
SessionTable *pTab /* Table that change applies to */
){
int iHash;
int bNull = 0;
int rc = SQLITE_OK;
SessionStat1Ctx stat1 = {{0,0,0,0,0},0};
if( pSession->rc ) return;
/* Load table details if required */
if( sessionInitTable(pSession, pTab) ) return;
/* Check the number of columns in this xPreUpdate call matches the
** number of columns in the table. */
if( (pTab->nCol-pTab->bRowid)!=pSession->hook.xCount(pSession->hook.pCtx) ){
pSession->rc = SQLITE_SCHEMA;
return;
}
/* Grow the hash table if required */
if( sessionGrowHash(pSession, 0, pTab) ){
pSession->rc = SQLITE_NOMEM;
return;
}
if( pTab->bStat1 ){
stat1.hook = pSession->hook;
stat1.pSession = pSession;
pSession->hook.pCtx = (void*)&stat1;
pSession->hook.xNew = sessionStat1New;
pSession->hook.xOld = sessionStat1Old;
pSession->hook.xCount = sessionStat1Count;
pSession->hook.xDepth = sessionStat1Depth;
if( pSession->pZeroBlob==0 ){
sqlite3_value *p = sqlite3ValueNew(0);
if( p==0 ){
rc = SQLITE_NOMEM;
goto error_out;
}
sqlite3ValueSetStr(p, 0, "", 0, SQLITE_STATIC);
pSession->pZeroBlob = p;
}
}
/* Calculate the hash-key for this change. If the primary key of the row
** includes a NULL value, exit early. Such changes are ignored by the
** session module. */
rc = sessionPreupdateHash(
pSession, iRowid, pTab, op==SQLITE_INSERT, &iHash, &bNull
);
if( rc!=SQLITE_OK ) goto error_out;
if( bNull==0 ){
/* Search the hash table for an existing record for this row. */
SessionChange *pC;
for(pC=pTab->apChange[iHash]; pC; pC=pC->pNext){
if( sessionPreupdateEqual(pSession, iRowid, pTab, pC, op) ) break;
}
if( pC==0 ){
/* Create a new change object containing all the old values (if
** this is an SQLITE_UPDATE or SQLITE_DELETE), or just the PK
** values (if this is an INSERT). */
sqlite3_int64 nByte; /* Number of bytes to allocate */
int i; /* Used to iterate through columns */
assert( rc==SQLITE_OK );
pTab->nEntry++;
/* Figure out how large an allocation is required */
nByte = sizeof(SessionChange);
for(i=0; i<(pTab->nCol-pTab->bRowid); i++){
sqlite3_value *p = 0;
if( op!=SQLITE_INSERT ){
TESTONLY(int trc = ) pSession->hook.xOld(pSession->hook.pCtx, i, &p);
assert( trc==SQLITE_OK );
}else if( pTab->abPK[i] ){
TESTONLY(int trc = ) pSession->hook.xNew(pSession->hook.pCtx, i, &p);
assert( trc==SQLITE_OK );
}
/* This may fail if SQLite value p contains a utf-16 string that must
** be converted to utf-8 and an OOM error occurs while doing so. */
rc = sessionSerializeValue(0, p, &nByte);
if( rc!=SQLITE_OK ) goto error_out;
}
if( pTab->bRowid ){
nByte += 9; /* Size of rowid field - an integer */
}
/* Allocate the change object */
pC = (SessionChange *)sessionMalloc64(pSession, nByte);
if( !pC ){
rc = SQLITE_NOMEM;
goto error_out;
}else{
memset(pC, 0, sizeof(SessionChange));
pC->aRecord = (u8 *)&pC[1];
}
/* Populate the change object. None of the preupdate_old(),
** preupdate_new() or SerializeValue() calls below may fail as all
** required values and encodings have already been cached in memory.
** It is not possible for an OOM to occur in this block. */
nByte = 0;
if( pTab->bRowid ){
pC->aRecord[0] = SQLITE_INTEGER;
sessionPutI64(&pC->aRecord[1], iRowid);
nByte = 9;
}
for(i=0; i<(pTab->nCol-pTab->bRowid); i++){
sqlite3_value *p = 0;
if( op!=SQLITE_INSERT ){
pSession->hook.xOld(pSession->hook.pCtx, i, &p);
}else if( pTab->abPK[i] ){
pSession->hook.xNew(pSession->hook.pCtx, i, &p);
}
sessionSerializeValue(&pC->aRecord[nByte], p, &nByte);
}
/* Add the change to the hash-table */
if( pSession->bIndirect || pSession->hook.xDepth(pSession->hook.pCtx) ){
pC->bIndirect = 1;
}
pC->nRecord = nByte;
pC->op = op;
pC->pNext = pTab->apChange[iHash];
pTab->apChange[iHash] = pC;
}else if( pC->bIndirect ){
/* If the existing change is considered "indirect", but this current
** change is "direct", mark the change object as direct. */
if( pSession->hook.xDepth(pSession->hook.pCtx)==0
&& pSession->bIndirect==0
){
pC->bIndirect = 0;
}
}
assert( rc==SQLITE_OK );
if( pSession->bEnableSize ){
rc = sessionUpdateMaxSize(op, pSession, pTab, pC);
}
}
/* If an error has occurred, mark the session object as failed. */
error_out:
if( pTab->bStat1 ){
pSession->hook = stat1.hook;
}
if( rc!=SQLITE_OK ){
pSession->rc = rc;
}
}
static int sessionFindTable(
sqlite3_session *pSession,
const char *zName,
SessionTable **ppTab
){
int rc = SQLITE_OK;
int nName = sqlite3Strlen30(zName);
SessionTable *pRet;
/* Search for an existing table */
for(pRet=pSession->pTable; pRet; pRet=pRet->pNext){
if( 0==sqlite3_strnicmp(pRet->zName, zName, nName+1) ) break;
}
if( pRet==0 && pSession->bAutoAttach ){
/* If there is a table-filter configured, invoke it. If it returns 0,
** do not automatically add the new table. */
if( pSession->xTableFilter==0
|| pSession->xTableFilter(pSession->pFilterCtx, zName)
){
rc = sqlite3session_attach(pSession, zName);
if( rc==SQLITE_OK ){
pRet = pSession->pTable;
while( ALWAYS(pRet) && pRet->pNext ){
pRet = pRet->pNext;
}
assert( pRet!=0 );
assert( 0==sqlite3_strnicmp(pRet->zName, zName, nName+1) );
}
}
}
assert( rc==SQLITE_OK || pRet==0 );
*ppTab = pRet;
return rc;
}
/*
** The 'pre-update' hook registered by this module with SQLite databases.
*/
static void xPreUpdate(
void *pCtx, /* Copy of third arg to preupdate_hook() */
sqlite3 *db, /* Database handle */
int op, /* SQLITE_UPDATE, DELETE or INSERT */
char const *zDb, /* Database name */
char const *zName, /* Table name */
sqlite3_int64 iKey1, /* Rowid of row about to be deleted/updated */
sqlite3_int64 iKey2 /* New rowid value (for a rowid UPDATE) */
){
sqlite3_session *pSession;
int nDb = sqlite3Strlen30(zDb);
assert( sqlite3_mutex_held(db->mutex) );
(void)iKey1;
(void)iKey2;
for(pSession=(sqlite3_session *)pCtx; pSession; pSession=pSession->pNext){
SessionTable *pTab;
/* If this session is attached to a different database ("main", "temp"
** etc.), or if it is not currently enabled, there is nothing to do. Skip
** to the next session object attached to this database. */
if( pSession->bEnable==0 ) continue;
if( pSession->rc ) continue;
if( sqlite3_strnicmp(zDb, pSession->zDb, nDb+1) ) continue;
pSession->rc = sessionFindTable(pSession, zName, &pTab);
if( pTab ){
assert( pSession->rc==SQLITE_OK );
assert( op==SQLITE_UPDATE || iKey1==iKey2 );
sessionPreupdateOneChange(op, iKey1, pSession, pTab);
if( op==SQLITE_UPDATE ){
sessionPreupdateOneChange(SQLITE_INSERT, iKey2, pSession, pTab);
}
}
}
}
/*
** The pre-update hook implementations.
*/
static int sessionPreupdateOld(void *pCtx, int iVal, sqlite3_value **ppVal){
return sqlite3_preupdate_old((sqlite3*)pCtx, iVal, ppVal);
}
static int sessionPreupdateNew(void *pCtx, int iVal, sqlite3_value **ppVal){
return sqlite3_preupdate_new((sqlite3*)pCtx, iVal, ppVal);
}
static int sessionPreupdateCount(void *pCtx){
return sqlite3_preupdate_count((sqlite3*)pCtx);
}
static int sessionPreupdateDepth(void *pCtx){
return sqlite3_preupdate_depth((sqlite3*)pCtx);
}
/*
** Install the pre-update hooks on the session object passed as the only
** argument.
*/
static void sessionPreupdateHooks(
sqlite3_session *pSession
){
pSession->hook.pCtx = (void*)pSession->db;
pSession->hook.xOld = sessionPreupdateOld;
pSession->hook.xNew = sessionPreupdateNew;
pSession->hook.xCount = sessionPreupdateCount;
pSession->hook.xDepth = sessionPreupdateDepth;
}
typedef struct SessionDiffCtx SessionDiffCtx;
struct SessionDiffCtx {
sqlite3_stmt *pStmt;
int bRowid;
int nOldOff;
};
/*
** The diff hook implementations.
*/
static int sessionDiffOld(void *pCtx, int iVal, sqlite3_value **ppVal){
SessionDiffCtx *p = (SessionDiffCtx*)pCtx;
*ppVal = sqlite3_column_value(p->pStmt, iVal+p->nOldOff+p->bRowid);
return SQLITE_OK;
}
static int sessionDiffNew(void *pCtx, int iVal, sqlite3_value **ppVal){
SessionDiffCtx *p = (SessionDiffCtx*)pCtx;
*ppVal = sqlite3_column_value(p->pStmt, iVal+p->bRowid);
return SQLITE_OK;
}
static int sessionDiffCount(void *pCtx){
SessionDiffCtx *p = (SessionDiffCtx*)pCtx;
return (p->nOldOff ? p->nOldOff : sqlite3_column_count(p->pStmt)) - p->bRowid;
}
static int sessionDiffDepth(void *pCtx){
(void)pCtx;
return 0;
}
/*
** Install the diff hooks on the session object passed as the only
** argument.
*/
static void sessionDiffHooks(
sqlite3_session *pSession,
SessionDiffCtx *pDiffCtx
){
pSession->hook.pCtx = (void*)pDiffCtx;
pSession->hook.xOld = sessionDiffOld;
pSession->hook.xNew = sessionDiffNew;
pSession->hook.xCount = sessionDiffCount;
pSession->hook.xDepth = sessionDiffDepth;
}
static char *sessionExprComparePK(
int nCol,
const char *zDb1, const char *zDb2,
const char *zTab,
const char **azCol, u8 *abPK
){
int i;
const char *zSep = "";
char *zRet = 0;
for(i=0; i<nCol; i++){
if( abPK[i] ){
zRet = sqlite3_mprintf("%z%s\"%w\".\"%w\".\"%w\"=\"%w\".\"%w\".\"%w\"",
zRet, zSep, zDb1, zTab, azCol[i], zDb2, zTab, azCol[i]
);
zSep = " AND ";
if( zRet==0 ) break;
}
}
return zRet;
}
static char *sessionExprCompareOther(
int nCol,
const char *zDb1, const char *zDb2,
const char *zTab,
const char **azCol, u8 *abPK
){
int i;
const char *zSep = "";
char *zRet = 0;
int bHave = 0;
for(i=0; i<nCol; i++){
if( abPK[i]==0 ){
bHave = 1;
zRet = sqlite3_mprintf(
"%z%s\"%w\".\"%w\".\"%w\" IS NOT \"%w\".\"%w\".\"%w\"",
zRet, zSep, zDb1, zTab, azCol[i], zDb2, zTab, azCol[i]
);
zSep = " OR ";
if( zRet==0 ) break;
}
}
if( bHave==0 ){
assert( zRet==0 );
zRet = sqlite3_mprintf("0");
}
return zRet;
}
static char *sessionSelectFindNew(
const char *zDb1, /* Pick rows in this db only */
const char *zDb2, /* But not in this one */
int bRowid,
const char *zTbl, /* Table name */
const char *zExpr
){
const char *zSel = (bRowid ? SESSIONS_ROWID ", *" : "*");
char *zRet = sqlite3_mprintf(
"SELECT %s FROM \"%w\".\"%w\" WHERE NOT EXISTS ("
" SELECT 1 FROM \"%w\".\"%w\" WHERE %s"
")",
zSel, zDb1, zTbl, zDb2, zTbl, zExpr
);
return zRet;
}
static int sessionDiffFindNew(
int op,
sqlite3_session *pSession,
SessionTable *pTab,
const char *zDb1,
const char *zDb2,
char *zExpr
){
int rc = SQLITE_OK;
char *zStmt = sessionSelectFindNew(
zDb1, zDb2, pTab->bRowid, pTab->zName, zExpr
);
if( zStmt==0 ){
rc = SQLITE_NOMEM;
}else{
sqlite3_stmt *pStmt;
rc = sqlite3_prepare(pSession->db, zStmt, -1, &pStmt, 0);
if( rc==SQLITE_OK ){
SessionDiffCtx *pDiffCtx = (SessionDiffCtx*)pSession->hook.pCtx;
pDiffCtx->pStmt = pStmt;
pDiffCtx->nOldOff = 0;
pDiffCtx->bRowid = pTab->bRowid;
while( SQLITE_ROW==sqlite3_step(pStmt) ){
i64 iRowid = (pTab->bRowid ? sqlite3_column_int64(pStmt, 0) : 0);
sessionPreupdateOneChange(op, iRowid, pSession, pTab);
}
rc = sqlite3_finalize(pStmt);
}
sqlite3_free(zStmt);
}
return rc;
}
/*
** Return a comma-separated list of the fully-qualified (with both database
** and table name) column names from table pTab. e.g.
**
** "main"."t1"."a", "main"."t1"."b", "main"."t1"."c"
*/
static char *sessionAllCols(
const char *zDb,
SessionTable *pTab
){
int ii;
char *zRet = 0;
for(ii=0; ii<pTab->nCol; ii++){
zRet = sqlite3_mprintf("%z%s\"%w\".\"%w\".\"%w\"",
zRet, (zRet ? ", " : ""), zDb, pTab->zName, pTab->azCol[ii]
);
if( !zRet ) break;
}
return zRet;
}
static int sessionDiffFindModified(
sqlite3_session *pSession,
SessionTable *pTab,
const char *zFrom,
const char *zExpr
){
int rc = SQLITE_OK;
char *zExpr2 = sessionExprCompareOther(pTab->nCol,
pSession->zDb, zFrom, pTab->zName, pTab->azCol, pTab->abPK
);
if( zExpr2==0 ){
rc = SQLITE_NOMEM;
}else{
char *z1 = sessionAllCols(pSession->zDb, pTab);
char *z2 = sessionAllCols(zFrom, pTab);
char *zStmt = sqlite3_mprintf(
"SELECT %s,%s FROM \"%w\".\"%w\", \"%w\".\"%w\" WHERE %s AND (%z)",
z1, z2, pSession->zDb, pTab->zName, zFrom, pTab->zName, zExpr, zExpr2
);
if( zStmt==0 || z1==0 || z2==0 ){
rc = SQLITE_NOMEM;
}else{
sqlite3_stmt *pStmt;
rc = sqlite3_prepare(pSession->db, zStmt, -1, &pStmt, 0);
if( rc==SQLITE_OK ){
SessionDiffCtx *pDiffCtx = (SessionDiffCtx*)pSession->hook.pCtx;
pDiffCtx->pStmt = pStmt;
pDiffCtx->nOldOff = pTab->nCol;
while( SQLITE_ROW==sqlite3_step(pStmt) ){
i64 iRowid = (pTab->bRowid ? sqlite3_column_int64(pStmt, 0) : 0);
sessionPreupdateOneChange(SQLITE_UPDATE, iRowid, pSession, pTab);
}
rc = sqlite3_finalize(pStmt);
}
}
sqlite3_free(zStmt);
sqlite3_free(z1);
sqlite3_free(z2);
}
return rc;
}
int sqlite3session_diff(
sqlite3_session *pSession,
const char *zFrom,
const char *zTbl,
char **pzErrMsg
){
const char *zDb = pSession->zDb;
int rc = pSession->rc;
SessionDiffCtx d;
memset(&d, 0, sizeof(d));
sessionDiffHooks(pSession, &d);
sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db));
if( pzErrMsg ) *pzErrMsg = 0;
if( rc==SQLITE_OK ){
char *zExpr = 0;
sqlite3 *db = pSession->db;
SessionTable *pTo; /* Table zTbl */
/* Locate and if necessary initialize the target table object */
rc = sessionFindTable(pSession, zTbl, &pTo);
if( pTo==0 ) goto diff_out;
if( sessionInitTable(pSession, pTo) ){
rc = pSession->rc;
goto diff_out;
}
/* Check the table schemas match */
if( rc==SQLITE_OK ){
int bHasPk = 0;
int bMismatch = 0;
int nCol; /* Columns in zFrom.zTbl */
int bRowid = 0;
u8 *abPK;
const char **azCol = 0;
rc = sessionTableInfo(0, db, zFrom, zTbl, &nCol, 0, &azCol, &abPK,
pSession->bImplicitPK ? &bRowid : 0
);
if( rc==SQLITE_OK ){
if( pTo->nCol!=nCol ){
bMismatch = 1;
}else{
int i;
for(i=0; i<nCol; i++){
if( pTo->abPK[i]!=abPK[i] ) bMismatch = 1;
if( sqlite3_stricmp(azCol[i], pTo->azCol[i]) ) bMismatch = 1;
if( abPK[i] ) bHasPk = 1;
}
}
}
sqlite3_free((char*)azCol);
if( bMismatch ){
if( pzErrMsg ){
*pzErrMsg = sqlite3_mprintf("table schemas do not match");
}
rc = SQLITE_SCHEMA;
}
if( bHasPk==0 ){
/* Ignore tables with no primary keys */
goto diff_out;
}
}
if( rc==SQLITE_OK ){
zExpr = sessionExprComparePK(pTo->nCol,
zDb, zFrom, pTo->zName, pTo->azCol, pTo->abPK
);
}
/* Find new rows */
if( rc==SQLITE_OK ){
rc = sessionDiffFindNew(SQLITE_INSERT, pSession, pTo, zDb, zFrom, zExpr);
}
/* Find old rows */
if( rc==SQLITE_OK ){
rc = sessionDiffFindNew(SQLITE_DELETE, pSession, pTo, zFrom, zDb, zExpr);
}
/* Find modified rows */
if( rc==SQLITE_OK ){
rc = sessionDiffFindModified(pSession, pTo, zFrom, zExpr);
}
sqlite3_free(zExpr);
}
diff_out:
sessionPreupdateHooks(pSession);
sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db));
return rc;
}
/*
** Create a session object. This session object will record changes to
** database zDb attached to connection db.
*/
int sqlite3session_create(
sqlite3 *db, /* Database handle */
const char *zDb, /* Name of db (e.g. "main") */
sqlite3_session **ppSession /* OUT: New session object */
){
sqlite3_session *pNew; /* Newly allocated session object */
sqlite3_session *pOld; /* Session object already attached to db */
int nDb = sqlite3Strlen30(zDb); /* Length of zDb in bytes */
/* Zero the output value in case an error occurs. */
*ppSession = 0;
/* Allocate and populate the new session object. */
pNew = (sqlite3_session *)sqlite3_malloc64(sizeof(sqlite3_session) + nDb + 1);
if( !pNew ) return SQLITE_NOMEM;
memset(pNew, 0, sizeof(sqlite3_session));
pNew->db = db;
pNew->zDb = (char *)&pNew[1];
pNew->bEnable = 1;
memcpy(pNew->zDb, zDb, nDb+1);
sessionPreupdateHooks(pNew);
/* Add the new session object to the linked list of session objects
** attached to database handle $db. Do this under the cover of the db
** handle mutex. */
sqlite3_mutex_enter(sqlite3_db_mutex(db));
pOld = (sqlite3_session*)sqlite3_preupdate_hook(db, xPreUpdate, (void*)pNew);
pNew->pNext = pOld;
sqlite3_mutex_leave(sqlite3_db_mutex(db));
*ppSession = pNew;
return SQLITE_OK;
}
/*
** Free the list of table objects passed as the first argument. The contents
** of the changed-rows hash tables are also deleted.
*/
static void sessionDeleteTable(sqlite3_session *pSession, SessionTable *pList){
SessionTable *pNext;
SessionTable *pTab;
for(pTab=pList; pTab; pTab=pNext){
int i;
pNext = pTab->pNext;
for(i=0; i<pTab->nChange; i++){
SessionChange *p;
SessionChange *pNextChange;
for(p=pTab->apChange[i]; p; p=pNextChange){
pNextChange = p->pNext;
sessionFree(pSession, p);
}
}
sessionFree(pSession, (char*)pTab->azCol); /* cast works around VC++ bug */
sessionFree(pSession, pTab->apChange);
sessionFree(pSession, pTab);
}
}
/*
** Delete a session object previously allocated using sqlite3session_create().
*/
void sqlite3session_delete(sqlite3_session *pSession){
sqlite3 *db = pSession->db;
sqlite3_session *pHead;
sqlite3_session **pp;
/* Unlink the session from the linked list of sessions attached to the
** database handle. Hold the db mutex while doing so. */
sqlite3_mutex_enter(sqlite3_db_mutex(db));
pHead = (sqlite3_session*)sqlite3_preupdate_hook(db, 0, 0);
for(pp=&pHead; ALWAYS((*pp)!=0); pp=&((*pp)->pNext)){
if( (*pp)==pSession ){
*pp = (*pp)->pNext;
if( pHead ) sqlite3_preupdate_hook(db, xPreUpdate, (void*)pHead);
break;
}
}
sqlite3_mutex_leave(sqlite3_db_mutex(db));
sqlite3ValueFree(pSession->pZeroBlob);
/* Delete all attached table objects. And the contents of their
** associated hash-tables. */
sessionDeleteTable(pSession, pSession->pTable);
/* Assert that all allocations have been freed and then free the
** session object itself. */
assert( pSession->nMalloc==0 );
sqlite3_free(pSession);
}
/*
** Set a table filter on a Session Object.
*/
void sqlite3session_table_filter(
sqlite3_session *pSession,
int(*xFilter)(void*, const char*),
void *pCtx /* First argument passed to xFilter */
){
pSession->bAutoAttach = 1;
pSession->pFilterCtx = pCtx;
pSession->xTableFilter = xFilter;
}
/*
** Attach a table to a session. All subsequent changes made to the table
** while the session object is enabled will be recorded.
**
** Only tables that have a PRIMARY KEY defined may be attached. It does
** not matter if the PRIMARY KEY is an "INTEGER PRIMARY KEY" (rowid alias)
** or not.
*/
int sqlite3session_attach(
sqlite3_session *pSession, /* Session object */
const char *zName /* Table name */
){
int rc = SQLITE_OK;
sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db));
if( !zName ){
pSession->bAutoAttach = 1;
}else{
SessionTable *pTab; /* New table object (if required) */
int nName; /* Number of bytes in string zName */
/* First search for an existing entry. If one is found, this call is
** a no-op. Return early. */
nName = sqlite3Strlen30(zName);
for(pTab=pSession->pTable; pTab; pTab=pTab->pNext){
if( 0==sqlite3_strnicmp(pTab->zName, zName, nName+1) ) break;
}
if( !pTab ){
/* Allocate new SessionTable object. */
int nByte = sizeof(SessionTable) + nName + 1;
pTab = (SessionTable*)sessionMalloc64(pSession, nByte);
if( !pTab ){
rc = SQLITE_NOMEM;
}else{
/* Populate the new SessionTable object and link it into the list.
** The new object must be linked onto the end of the list, not
** simply added to the start of it in order to ensure that tables
** appear in the correct order when a changeset or patchset is
** eventually generated. */
SessionTable **ppTab;
memset(pTab, 0, sizeof(SessionTable));
pTab->zName = (char *)&pTab[1];
memcpy(pTab->zName, zName, nName+1);
for(ppTab=&pSession->pTable; *ppTab; ppTab=&(*ppTab)->pNext);
*ppTab = pTab;
}
}
}
sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db));
return rc;
}
/*
** Ensure that there is room in the buffer to append nByte bytes of data.
** If not, use sqlite3_realloc() to grow the buffer so that there is.
**
** If successful, return zero. Otherwise, if an OOM condition is encountered,
** set *pRc to SQLITE_NOMEM and return non-zero.
*/
static int sessionBufferGrow(SessionBuffer *p, i64 nByte, int *pRc){
#define SESSION_MAX_BUFFER_SZ (0x7FFFFF00 - 1)
i64 nReq = p->nBuf + nByte;
if( *pRc==SQLITE_OK && nReq>p->nAlloc ){
u8 *aNew;
i64 nNew = p->nAlloc ? p->nAlloc : 128;
do {
nNew = nNew*2;
}while( nNew<nReq );
/* The value of SESSION_MAX_BUFFER_SZ is copied from the implementation
** of sqlite3_realloc64(). Allocations greater than this size in bytes
** always fail. It is used here to ensure that this routine can always
** allocate up to this limit - instead of up to the largest power of
** two smaller than the limit. */
if( nNew>SESSION_MAX_BUFFER_SZ ){
nNew = SESSION_MAX_BUFFER_SZ;
if( nNew<nReq ){
*pRc = SQLITE_NOMEM;
return 1;
}
}
aNew = (u8 *)sqlite3_realloc64(p->aBuf, nNew);
if( 0==aNew ){
*pRc = SQLITE_NOMEM;
}else{
p->aBuf = aNew;
p->nAlloc = nNew;
}
}
return (*pRc!=SQLITE_OK);
}
/*
** Append the value passed as the second argument to the buffer passed
** as the first.
**
** This function is a no-op if *pRc is non-zero when it is called.
** Otherwise, if an error occurs, *pRc is set to an SQLite error code
** before returning.
*/
static void sessionAppendValue(SessionBuffer *p, sqlite3_value *pVal, int *pRc){
int rc = *pRc;
if( rc==SQLITE_OK ){
sqlite3_int64 nByte = 0;
rc = sessionSerializeValue(0, pVal, &nByte);
sessionBufferGrow(p, nByte, &rc);
if( rc==SQLITE_OK ){
rc = sessionSerializeValue(&p->aBuf[p->nBuf], pVal, 0);
p->nBuf += nByte;
}else{
*pRc = rc;
}
}
}
/*
** This function is a no-op if *pRc is other than SQLITE_OK when it is
** called. Otherwise, append a single byte to the buffer.
**
** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before
** returning.
*/
static void sessionAppendByte(SessionBuffer *p, u8 v, int *pRc){
if( 0==sessionBufferGrow(p, 1, pRc) ){
p->aBuf[p->nBuf++] = v;
}
}
/*
** This function is a no-op if *pRc is other than SQLITE_OK when it is
** called. Otherwise, append a single varint to the buffer.
**
** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before
** returning.
*/
static void sessionAppendVarint(SessionBuffer *p, int v, int *pRc){
if( 0==sessionBufferGrow(p, 9, pRc) ){
p->nBuf += sessionVarintPut(&p->aBuf[p->nBuf], v);
}
}
/*
** This function is a no-op if *pRc is other than SQLITE_OK when it is
** called. Otherwise, append a blob of data to the buffer.
**
** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before
** returning.
*/
static void sessionAppendBlob(
SessionBuffer *p,
const u8 *aBlob,
int nBlob,
int *pRc
){
if( nBlob>0 && 0==sessionBufferGrow(p, nBlob, pRc) ){
memcpy(&p->aBuf[p->nBuf], aBlob, nBlob);
p->nBuf += nBlob;
}
}
/*
** This function is a no-op if *pRc is other than SQLITE_OK when it is
** called. Otherwise, append a string to the buffer. All bytes in the string
** up to (but not including) the nul-terminator are written to the buffer.
**
** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before
** returning.
*/
static void sessionAppendStr(
SessionBuffer *p,
const char *zStr,
int *pRc
){
int nStr = sqlite3Strlen30(zStr);
if( 0==sessionBufferGrow(p, nStr+1, pRc) ){
memcpy(&p->aBuf[p->nBuf], zStr, nStr);
p->nBuf += nStr;
p->aBuf[p->nBuf] = 0x00;
}
}
/*
** This function is a no-op if *pRc is other than SQLITE_OK when it is
** called. Otherwise, append the string representation of integer iVal
** to the buffer. No nul-terminator is written.
**
** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before
** returning.
*/
static void sessionAppendInteger(
SessionBuffer *p, /* Buffer to append to */
int iVal, /* Value to write the string rep. of */
int *pRc /* IN/OUT: Error code */
){
char aBuf[24];
sqlite3_snprintf(sizeof(aBuf)-1, aBuf, "%d", iVal);
sessionAppendStr(p, aBuf, pRc);
}
static void sessionAppendPrintf(
SessionBuffer *p, /* Buffer to append to */
int *pRc,
const char *zFmt,
...
){
if( *pRc==SQLITE_OK ){
char *zApp = 0;
va_list ap;
va_start(ap, zFmt);
zApp = sqlite3_vmprintf(zFmt, ap);
if( zApp==0 ){
*pRc = SQLITE_NOMEM;
}else{
sessionAppendStr(p, zApp, pRc);
}
va_end(ap);
sqlite3_free(zApp);
}
}
/*
** This function is a no-op if *pRc is other than SQLITE_OK when it is
** called. Otherwise, append the string zStr enclosed in quotes (") and
** with any embedded quote characters escaped to the buffer. No
** nul-terminator byte is written.
**
** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before
** returning.
*/
static void sessionAppendIdent(
SessionBuffer *p, /* Buffer to a append to */
const char *zStr, /* String to quote, escape and append */
int *pRc /* IN/OUT: Error code */
){
int nStr = sqlite3Strlen30(zStr)*2 + 2 + 2;
if( 0==sessionBufferGrow(p, nStr, pRc) ){
char *zOut = (char *)&p->aBuf[p->nBuf];
const char *zIn = zStr;
*zOut++ = '"';
while( *zIn ){
if( *zIn=='"' ) *zOut++ = '"';
*zOut++ = *(zIn++);
}
*zOut++ = '"';
p->nBuf = (int)((u8 *)zOut - p->aBuf);
p->aBuf[p->nBuf] = 0x00;
}
}
/*
** This function is a no-op if *pRc is other than SQLITE_OK when it is
** called. Otherwse, it appends the serialized version of the value stored
** in column iCol of the row that SQL statement pStmt currently points
** to to the buffer.
*/
static void sessionAppendCol(
SessionBuffer *p, /* Buffer to append to */
sqlite3_stmt *pStmt, /* Handle pointing to row containing value */
int iCol, /* Column to read value from */
int *pRc /* IN/OUT: Error code */
){
if( *pRc==SQLITE_OK ){
int eType = sqlite3_column_type(pStmt, iCol);
sessionAppendByte(p, (u8)eType, pRc);
if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
sqlite3_int64 i;
u8 aBuf[8];
if( eType==SQLITE_INTEGER ){
i = sqlite3_column_int64(pStmt, iCol);
}else{
double r = sqlite3_column_double(pStmt, iCol);
memcpy(&i, &r, 8);
}
sessionPutI64(aBuf, i);
sessionAppendBlob(p, aBuf, 8, pRc);
}
if( eType==SQLITE_BLOB || eType==SQLITE_TEXT ){
u8 *z;
int nByte;
if( eType==SQLITE_BLOB ){
z = (u8 *)sqlite3_column_blob(pStmt, iCol);
}else{
z = (u8 *)sqlite3_column_text(pStmt, iCol);
}
nByte = sqlite3_column_bytes(pStmt, iCol);
if( z || (eType==SQLITE_BLOB && nByte==0) ){
sessionAppendVarint(p, nByte, pRc);
sessionAppendBlob(p, z, nByte, pRc);
}else{
*pRc = SQLITE_NOMEM;
}
}
}
}
/*
**
** This function appends an update change to the buffer (see the comments
** under "CHANGESET FORMAT" at the top of the file). An update change
** consists of:
**
** 1 byte: SQLITE_UPDATE (0x17)
** n bytes: old.* record (see RECORD FORMAT)
** m bytes: new.* record (see RECORD FORMAT)
**
** The SessionChange object passed as the third argument contains the
** values that were stored in the row when the session began (the old.*
** values). The statement handle passed as the second argument points
** at the current version of the row (the new.* values).
**
** If all of the old.* values are equal to their corresponding new.* value
** (i.e. nothing has changed), then no data at all is appended to the buffer.
**
** Otherwise, the old.* record contains all primary key values and the
** original values of any fields that have been modified. The new.* record
** contains the new values of only those fields that have been modified.
*/
static int sessionAppendUpdate(
SessionBuffer *pBuf, /* Buffer to append to */
int bPatchset, /* True for "patchset", 0 for "changeset" */
sqlite3_stmt *pStmt, /* Statement handle pointing at new row */
SessionChange *p, /* Object containing old values */
u8 *abPK /* Boolean array - true for PK columns */
){
int rc = SQLITE_OK;
SessionBuffer buf2 = {0,0,0}; /* Buffer to accumulate new.* record in */
int bNoop = 1; /* Set to zero if any values are modified */
int nRewind = pBuf->nBuf; /* Set to zero if any values are modified */
int i; /* Used to iterate through columns */
u8 *pCsr = p->aRecord; /* Used to iterate through old.* values */
assert( abPK!=0 );
sessionAppendByte(pBuf, SQLITE_UPDATE, &rc);
sessionAppendByte(pBuf, p->bIndirect, &rc);
for(i=0; i<sqlite3_column_count(pStmt); i++){
int bChanged = 0;
int nAdvance;
int eType = *pCsr;
switch( eType ){
case SQLITE_NULL:
nAdvance = 1;
if( sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){
bChanged = 1;
}
break;
case SQLITE_FLOAT:
case SQLITE_INTEGER: {
nAdvance = 9;
if( eType==sqlite3_column_type(pStmt, i) ){
sqlite3_int64 iVal = sessionGetI64(&pCsr[1]);
if( eType==SQLITE_INTEGER ){
if( iVal==sqlite3_column_int64(pStmt, i) ) break;
}else{
double dVal;
memcpy(&dVal, &iVal, 8);
if( dVal==sqlite3_column_double(pStmt, i) ) break;
}
}
bChanged = 1;
break;
}
default: {
int n;
int nHdr = 1 + sessionVarintGet(&pCsr[1], &n);
assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
nAdvance = nHdr + n;
if( eType==sqlite3_column_type(pStmt, i)
&& n==sqlite3_column_bytes(pStmt, i)
&& (n==0 || 0==memcmp(&pCsr[nHdr], sqlite3_column_blob(pStmt, i), n))
){
break;
}
bChanged = 1;
}
}
/* If at least one field has been modified, this is not a no-op. */
if( bChanged ) bNoop = 0;
/* Add a field to the old.* record. This is omitted if this module is
** currently generating a patchset. */
if( bPatchset==0 ){
if( bChanged || abPK[i] ){
sessionAppendBlob(pBuf, pCsr, nAdvance, &rc);
}else{
sessionAppendByte(pBuf, 0, &rc);
}
}
/* Add a field to the new.* record. Or the only record if currently
** generating a patchset. */
if( bChanged || (bPatchset && abPK[i]) ){
sessionAppendCol(&buf2, pStmt, i, &rc);
}else{
sessionAppendByte(&buf2, 0, &rc);
}
pCsr += nAdvance;
}
if( bNoop ){
pBuf->nBuf = nRewind;
}else{
sessionAppendBlob(pBuf, buf2.aBuf, buf2.nBuf, &rc);
}
sqlite3_free(buf2.aBuf);
return rc;
}
/*
** Append a DELETE change to the buffer passed as the first argument. Use
** the changeset format if argument bPatchset is zero, or the patchset
** format otherwise.
*/
static int sessionAppendDelete(
SessionBuffer *pBuf, /* Buffer to append to */
int bPatchset, /* True for "patchset", 0 for "changeset" */
SessionChange *p, /* Object containing old values */
int nCol, /* Number of columns in table */
u8 *abPK /* Boolean array - true for PK columns */
){
int rc = SQLITE_OK;
sessionAppendByte(pBuf, SQLITE_DELETE, &rc);
sessionAppendByte(pBuf, p->bIndirect, &rc);
if( bPatchset==0 ){
sessionAppendBlob(pBuf, p->aRecord, p->nRecord, &rc);
}else{
int i;
u8 *a = p->aRecord;
for(i=0; i<nCol; i++){
u8 *pStart = a;
int eType = *a++;
switch( eType ){
case 0:
case SQLITE_NULL:
assert( abPK[i]==0 );
break;
case SQLITE_FLOAT:
case SQLITE_INTEGER:
a += 8;
break;
default: {
int n;
a += sessionVarintGet(a, &n);
a += n;
break;
}
}
if( abPK[i] ){
sessionAppendBlob(pBuf, pStart, (int)(a-pStart), &rc);
}
}
assert( (a - p->aRecord)==p->nRecord );
}
return rc;
}
/*
** Formulate and prepare a SELECT statement to retrieve a row from table
** zTab in database zDb based on its primary key. i.e.
**
** SELECT *, <noop-test> FROM zDb.zTab WHERE (pk1, pk2,...) IS (?1, ?2,...)
**
** where <noop-test> is:
**
** 1 AND (?A OR ?1 IS <column>) AND ...
**
** for each non-pk <column>.
*/
static int sessionSelectStmt(
sqlite3 *db, /* Database handle */
int bIgnoreNoop,
const char *zDb, /* Database name */
const char *zTab, /* Table name */
int bRowid,
int nCol, /* Number of columns in table */
const char **azCol, /* Names of table columns */
u8 *abPK, /* PRIMARY KEY array */
sqlite3_stmt **ppStmt /* OUT: Prepared SELECT statement */
){
int rc = SQLITE_OK;
char *zSql = 0;
const char *zSep = "";
const char *zCols = bRowid ? SESSIONS_ROWID ", *" : "*";
int nSql = -1;
int i;
SessionBuffer nooptest = {0, 0, 0};
SessionBuffer pkfield = {0, 0, 0};
SessionBuffer pkvar = {0, 0, 0};
sessionAppendStr(&nooptest, ", 1", &rc);
if( 0==sqlite3_stricmp("sqlite_stat1", zTab) ){
sessionAppendStr(&nooptest, " AND (?6 OR ?3 IS stat)", &rc);
sessionAppendStr(&pkfield, "tbl, idx", &rc);
sessionAppendStr(&pkvar,
"?1, (CASE WHEN ?2=X'' THEN NULL ELSE ?2 END)", &rc
);
zCols = "tbl, ?2, stat";
}else{
for(i=0; i<nCol; i++){
if( abPK[i] ){
sessionAppendStr(&pkfield, zSep, &rc);
sessionAppendStr(&pkvar, zSep, &rc);
zSep = ", ";
sessionAppendIdent(&pkfield, azCol[i], &rc);
sessionAppendPrintf(&pkvar, &rc, "?%d", i+1);
}else{
sessionAppendPrintf(&nooptest, &rc,
" AND (?%d OR ?%d IS %w.%w)", i+1+nCol, i+1, zTab, azCol[i]
);
}
}
}
if( rc==SQLITE_OK ){
zSql = sqlite3_mprintf(
"SELECT %s%s FROM %Q.%Q WHERE (%s) IS (%s)",
zCols, (bIgnoreNoop ? (char*)nooptest.aBuf : ""),
zDb, zTab, (char*)pkfield.aBuf, (char*)pkvar.aBuf
);
if( zSql==0 ) rc = SQLITE_NOMEM;
}
#if 0
if( 0==sqlite3_stricmp("sqlite_stat1", zTab) ){
zSql = sqlite3_mprintf(
"SELECT tbl, ?2, stat FROM %Q.sqlite_stat1 WHERE tbl IS ?1 AND "
"idx IS (CASE WHEN ?2=X'' THEN NULL ELSE ?2 END)", zDb
);
if( zSql==0 ) rc = SQLITE_NOMEM;
}else{
const char *zSep = "";
SessionBuffer buf = {0, 0, 0};
sessionAppendStr(&buf, "SELECT * FROM ", &rc);
sessionAppendIdent(&buf, zDb, &rc);
sessionAppendStr(&buf, ".", &rc);
sessionAppendIdent(&buf, zTab, &rc);
sessionAppendStr(&buf, " WHERE ", &rc);
for(i=0; i<nCol; i++){
if( abPK[i] ){
sessionAppendStr(&buf, zSep, &rc);
sessionAppendIdent(&buf, azCol[i], &rc);
sessionAppendStr(&buf, " IS ?", &rc);
sessionAppendInteger(&buf, i+1, &rc);
zSep = " AND ";
}
}
zSql = (char*)buf.aBuf;
nSql = buf.nBuf;
}
#endif
if( rc==SQLITE_OK ){
rc = sqlite3_prepare_v2(db, zSql, nSql, ppStmt, 0);
}
sqlite3_free(zSql);
sqlite3_free(nooptest.aBuf);
sqlite3_free(pkfield.aBuf);
sqlite3_free(pkvar.aBuf);
return rc;
}
/*
** Bind the PRIMARY KEY values from the change passed in argument pChange
** to the SELECT statement passed as the first argument. The SELECT statement
** is as prepared by function sessionSelectStmt().
**
** Return SQLITE_OK if all PK values are successfully bound, or an SQLite
** error code (e.g. SQLITE_NOMEM) otherwise.
*/
static int sessionSelectBind(
sqlite3_stmt *pSelect, /* SELECT from sessionSelectStmt() */
int nCol, /* Number of columns in table */
u8 *abPK, /* PRIMARY KEY array */
SessionChange *pChange /* Change structure */
){
int i;
int rc = SQLITE_OK;
u8 *a = pChange->aRecord;
for(i=0; i<nCol && rc==SQLITE_OK; i++){
int eType = *a++;
switch( eType ){
case 0:
case SQLITE_NULL:
assert( abPK[i]==0 );
break;
case SQLITE_INTEGER: {
if( abPK[i] ){
i64 iVal = sessionGetI64(a);
rc = sqlite3_bind_int64(pSelect, i+1, iVal);
}
a += 8;
break;
}
case SQLITE_FLOAT: {
if( abPK[i] ){
double rVal;
i64 iVal = sessionGetI64(a);
memcpy(&rVal, &iVal, 8);
rc = sqlite3_bind_double(pSelect, i+1, rVal);
}
a += 8;
break;
}
case SQLITE_TEXT: {
int n;
a += sessionVarintGet(a, &n);
if( abPK[i] ){
rc = sqlite3_bind_text(pSelect, i+1, (char *)a, n, SQLITE_TRANSIENT);
}
a += n;
break;
}
default: {
int n;
assert( eType==SQLITE_BLOB );
a += sessionVarintGet(a, &n);
if( abPK[i] ){
rc = sqlite3_bind_blob(pSelect, i+1, a, n, SQLITE_TRANSIENT);
}
a += n;
break;
}
}
}
return rc;
}
/*
** This function is a no-op if *pRc is set to other than SQLITE_OK when it
** is called. Otherwise, append a serialized table header (part of the binary
** changeset format) to buffer *pBuf. If an error occurs, set *pRc to an
** SQLite error code before returning.
*/
static void sessionAppendTableHdr(
SessionBuffer *pBuf, /* Append header to this buffer */
int bPatchset, /* Use the patchset format if true */
SessionTable *pTab, /* Table object to append header for */
int *pRc /* IN/OUT: Error code */
){
/* Write a table header */
sessionAppendByte(pBuf, (bPatchset ? 'P' : 'T'), pRc);
sessionAppendVarint(pBuf, pTab->nCol, pRc);
sessionAppendBlob(pBuf, pTab->abPK, pTab->nCol, pRc);
sessionAppendBlob(pBuf, (u8 *)pTab->zName, (int)strlen(pTab->zName)+1, pRc);
}
/*
** Generate either a changeset (if argument bPatchset is zero) or a patchset
** (if it is non-zero) based on the current contents of the session object
** passed as the first argument.
**
** If no error occurs, SQLITE_OK is returned and the new changeset/patchset
** stored in output variables *pnChangeset and *ppChangeset. Or, if an error
** occurs, an SQLite error code is returned and both output variables set
** to 0.
*/
static int sessionGenerateChangeset(
sqlite3_session *pSession, /* Session object */
int bPatchset, /* True for patchset, false for changeset */
int (*xOutput)(void *pOut, const void *pData, int nData),
void *pOut, /* First argument for xOutput */
int *pnChangeset, /* OUT: Size of buffer at *ppChangeset */
void **ppChangeset /* OUT: Buffer containing changeset */
){
sqlite3 *db = pSession->db; /* Source database handle */
SessionTable *pTab; /* Used to iterate through attached tables */
SessionBuffer buf = {0,0,0}; /* Buffer in which to accumlate changeset */
int rc; /* Return code */
assert( xOutput==0 || (pnChangeset==0 && ppChangeset==0) );
assert( xOutput!=0 || (pnChangeset!=0 && ppChangeset!=0) );
/* Zero the output variables in case an error occurs. If this session
** object is already in the error state (sqlite3_session.rc != SQLITE_OK),
** this call will be a no-op. */
if( xOutput==0 ){
assert( pnChangeset!=0 && ppChangeset!=0 );
*pnChangeset = 0;
*ppChangeset = 0;
}
if( pSession->rc ) return pSession->rc;
rc = sqlite3_exec(pSession->db, "SAVEPOINT changeset", 0, 0, 0);
if( rc!=SQLITE_OK ) return rc;
sqlite3_mutex_enter(sqlite3_db_mutex(db));
for(pTab=pSession->pTable; rc==SQLITE_OK && pTab; pTab=pTab->pNext){
if( pTab->nEntry ){
const char *zName = pTab->zName;
int nCol = 0; /* Number of columns in table */
u8 *abPK = 0; /* Primary key array */
const char **azCol = 0; /* Table columns */
int i; /* Used to iterate through hash buckets */
sqlite3_stmt *pSel = 0; /* SELECT statement to query table pTab */
int nRewind = buf.nBuf; /* Initial size of write buffer */
int nNoop; /* Size of buffer after writing tbl header */
int bRowid = 0;
/* Check the table schema is still Ok. */
rc = sessionTableInfo(
0, db, pSession->zDb, zName, &nCol, 0, &azCol, &abPK,
(pSession->bImplicitPK ? &bRowid : 0)
);
if( rc==SQLITE_OK && (
pTab->nCol!=nCol
|| pTab->bRowid!=bRowid
|| memcmp(abPK, pTab->abPK, nCol)
)){
rc = SQLITE_SCHEMA;
}
/* Write a table header */
sessionAppendTableHdr(&buf, bPatchset, pTab, &rc);
/* Build and compile a statement to execute: */
if( rc==SQLITE_OK ){
rc = sessionSelectStmt(
db, 0, pSession->zDb, zName, bRowid, nCol, azCol, abPK, &pSel
);
}
nNoop = buf.nBuf;
for(i=0; i<pTab->nChange && rc==SQLITE_OK; i++){
SessionChange *p; /* Used to iterate through changes */
for(p=pTab->apChange[i]; rc==SQLITE_OK && p; p=p->pNext){
rc = sessionSelectBind(pSel, nCol, abPK, p);
if( rc!=SQLITE_OK ) continue;
if( sqlite3_step(pSel)==SQLITE_ROW ){
if( p->op==SQLITE_INSERT ){
int iCol;
sessionAppendByte(&buf, SQLITE_INSERT, &rc);
sessionAppendByte(&buf, p->bIndirect, &rc);
for(iCol=0; iCol<nCol; iCol++){
sessionAppendCol(&buf, pSel, iCol, &rc);
}
}else{
assert( abPK!=0 ); /* Because sessionSelectStmt() returned ok */
rc = sessionAppendUpdate(&buf, bPatchset, pSel, p, abPK);
}
}else if( p->op!=SQLITE_INSERT ){
rc = sessionAppendDelete(&buf, bPatchset, p, nCol, abPK);
}
if( rc==SQLITE_OK ){
rc = sqlite3_reset(pSel);
}
/* If the buffer is now larger than sessions_strm_chunk_size, pass
** its contents to the xOutput() callback. */
if( xOutput
&& rc==SQLITE_OK
&& buf.nBuf>nNoop
&& buf.nBuf>sessions_strm_chunk_size
){
rc = xOutput(pOut, (void*)buf.aBuf, buf.nBuf);
nNoop = -1;
buf.nBuf = 0;
}
}
}
sqlite3_finalize(pSel);
if( buf.nBuf==nNoop ){
buf.nBuf = nRewind;
}
sqlite3_free((char*)azCol); /* cast works around VC++ bug */
}
}
if( rc==SQLITE_OK ){
if( xOutput==0 ){
*pnChangeset = buf.nBuf;
*ppChangeset = buf.aBuf;
buf.aBuf = 0;
}else if( buf.nBuf>0 ){
rc = xOutput(pOut, (void*)buf.aBuf, buf.nBuf);
}
}
sqlite3_free(buf.aBuf);
sqlite3_exec(db, "RELEASE changeset", 0, 0, 0);
sqlite3_mutex_leave(sqlite3_db_mutex(db));
return rc;
}
/*
** Obtain a changeset object containing all changes recorded by the
** session object passed as the first argument.
**
** It is the responsibility of the caller to eventually free the buffer
** using sqlite3_free().
*/
int sqlite3session_changeset(
sqlite3_session *pSession, /* Session object */
int *pnChangeset, /* OUT: Size of buffer at *ppChangeset */
void **ppChangeset /* OUT: Buffer containing changeset */
){
int rc;
if( pnChangeset==0 || ppChangeset==0 ) return SQLITE_MISUSE;
rc = sessionGenerateChangeset(pSession, 0, 0, 0, pnChangeset, ppChangeset);
assert( rc || pnChangeset==0
|| pSession->bEnableSize==0 || *pnChangeset<=pSession->nMaxChangesetSize
);
return rc;
}
/*
** Streaming version of sqlite3session_changeset().
*/
int sqlite3session_changeset_strm(
sqlite3_session *pSession,
int (*xOutput)(void *pOut, const void *pData, int nData),
void *pOut
){
if( xOutput==0 ) return SQLITE_MISUSE;
return sessionGenerateChangeset(pSession, 0, xOutput, pOut, 0, 0);
}
/*
** Streaming version of sqlite3session_patchset().
*/
int sqlite3session_patchset_strm(
sqlite3_session *pSession,
int (*xOutput)(void *pOut, const void *pData, int nData),
void *pOut
){
if( xOutput==0 ) return SQLITE_MISUSE;
return sessionGenerateChangeset(pSession, 1, xOutput, pOut, 0, 0);
}
/*
** Obtain a patchset object containing all changes recorded by the
** session object passed as the first argument.
**
** It is the responsibility of the caller to eventually free the buffer
** using sqlite3_free().
*/
int sqlite3session_patchset(
sqlite3_session *pSession, /* Session object */
int *pnPatchset, /* OUT: Size of buffer at *ppChangeset */
void **ppPatchset /* OUT: Buffer containing changeset */
){
if( pnPatchset==0 || ppPatchset==0 ) return SQLITE_MISUSE;
return sessionGenerateChangeset(pSession, 1, 0, 0, pnPatchset, ppPatchset);
}
/*
** Enable or disable the session object passed as the first argument.
*/
int sqlite3session_enable(sqlite3_session *pSession, int bEnable){
int ret;
sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db));
if( bEnable>=0 ){
pSession->bEnable = bEnable;
}
ret = pSession->bEnable;
sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db));
return ret;
}
/*
** Enable or disable the session object passed as the first argument.
*/
int sqlite3session_indirect(sqlite3_session *pSession, int bIndirect){
int ret;
sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db));
if( bIndirect>=0 ){
pSession->bIndirect = bIndirect;
}
ret = pSession->bIndirect;
sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db));
return ret;
}
/*
** Return true if there have been no changes to monitored tables recorded
** by the session object passed as the only argument.
*/
int sqlite3session_isempty(sqlite3_session *pSession){
int ret = 0;
SessionTable *pTab;
sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db));
for(pTab=pSession->pTable; pTab && ret==0; pTab=pTab->pNext){
ret = (pTab->nEntry>0);
}
sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db));
return (ret==0);
}
/*
** Return the amount of heap memory in use.
*/
sqlite3_int64 sqlite3session_memory_used(sqlite3_session *pSession){
return pSession->nMalloc;
}
/*
** Configure the session object passed as the first argument.
*/
int sqlite3session_object_config(sqlite3_session *pSession, int op, void *pArg){
int rc = SQLITE_OK;
switch( op ){
case SQLITE_SESSION_OBJCONFIG_SIZE: {
int iArg = *(int*)pArg;
if( iArg>=0 ){
if( pSession->pTable ){
rc = SQLITE_MISUSE;
}else{
pSession->bEnableSize = (iArg!=0);
}
}
*(int*)pArg = pSession->bEnableSize;
break;
}
case SQLITE_SESSION_OBJCONFIG_ROWID: {
int iArg = *(int*)pArg;
if( iArg>=0 ){
if( pSession->pTable ){
rc = SQLITE_MISUSE;
}else{
pSession->bImplicitPK = (iArg!=0);
}
}
*(int*)pArg = pSession->bImplicitPK;
break;
}
default:
rc = SQLITE_MISUSE;
}
return rc;
}
/*
** Return the maximum size of sqlite3session_changeset() output.
*/
sqlite3_int64 sqlite3session_changeset_size(sqlite3_session *pSession){
return pSession->nMaxChangesetSize;
}
/*
** Do the work for either sqlite3changeset_start() or start_strm().
*/
static int sessionChangesetStart(
sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */
int (*xInput)(void *pIn, void *pData, int *pnData),
void *pIn,
int nChangeset, /* Size of buffer pChangeset in bytes */
void *pChangeset, /* Pointer to buffer containing changeset */
int bInvert, /* True to invert changeset */
int bSkipEmpty /* True to skip empty UPDATE changes */
){
sqlite3_changeset_iter *pRet; /* Iterator to return */
int nByte; /* Number of bytes to allocate for iterator */
assert( xInput==0 || (pChangeset==0 && nChangeset==0) );
/* Zero the output variable in case an error occurs. */
*pp = 0;
/* Allocate and initialize the iterator structure. */
nByte = sizeof(sqlite3_changeset_iter);
pRet = (sqlite3_changeset_iter *)sqlite3_malloc(nByte);
if( !pRet ) return SQLITE_NOMEM;
memset(pRet, 0, sizeof(sqlite3_changeset_iter));
pRet->in.aData = (u8 *)pChangeset;
pRet->in.nData = nChangeset;
pRet->in.xInput = xInput;
pRet->in.pIn = pIn;
pRet->in.bEof = (xInput ? 0 : 1);
pRet->bInvert = bInvert;
pRet->bSkipEmpty = bSkipEmpty;
/* Populate the output variable and return success. */
*pp = pRet;
return SQLITE_OK;
}
/*
** Create an iterator used to iterate through the contents of a changeset.
*/
int sqlite3changeset_start(
sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */
int nChangeset, /* Size of buffer pChangeset in bytes */
void *pChangeset /* Pointer to buffer containing changeset */
){
return sessionChangesetStart(pp, 0, 0, nChangeset, pChangeset, 0, 0);
}
int sqlite3changeset_start_v2(
sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */
int nChangeset, /* Size of buffer pChangeset in bytes */
void *pChangeset, /* Pointer to buffer containing changeset */
int flags
){
int bInvert = !!(flags & SQLITE_CHANGESETSTART_INVERT);
return sessionChangesetStart(pp, 0, 0, nChangeset, pChangeset, bInvert, 0);
}
/*
** Streaming version of sqlite3changeset_start().
*/
int sqlite3changeset_start_strm(
sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */
int (*xInput)(void *pIn, void *pData, int *pnData),
void *pIn
){
return sessionChangesetStart(pp, xInput, pIn, 0, 0, 0, 0);
}
int sqlite3changeset_start_v2_strm(
sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */
int (*xInput)(void *pIn, void *pData, int *pnData),
void *pIn,
int flags
){
int bInvert = !!(flags & SQLITE_CHANGESETSTART_INVERT);
return sessionChangesetStart(pp, xInput, pIn, 0, 0, bInvert, 0);
}
/*
** If the SessionInput object passed as the only argument is a streaming
** object and the buffer is full, discard some data to free up space.
*/
static void sessionDiscardData(SessionInput *pIn){
if( pIn->xInput && pIn->iNext>=sessions_strm_chunk_size ){
int nMove = pIn->buf.nBuf - pIn->iNext;
assert( nMove>=0 );
if( nMove>0 ){
memmove(pIn->buf.aBuf, &pIn->buf.aBuf[pIn->iNext], nMove);
}
pIn->buf.nBuf -= pIn->iNext;
pIn->iNext = 0;
pIn->nData = pIn->buf.nBuf;
}
}
/*
** Ensure that there are at least nByte bytes available in the buffer. Or,
** if there are not nByte bytes remaining in the input, that all available
** data is in the buffer.
**
** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise.
*/
static int sessionInputBuffer(SessionInput *pIn, int nByte){
int rc = SQLITE_OK;
if( pIn->xInput ){
while( !pIn->bEof && (pIn->iNext+nByte)>=pIn->nData && rc==SQLITE_OK ){
int nNew = sessions_strm_chunk_size;
if( pIn->bNoDiscard==0 ) sessionDiscardData(pIn);
if( SQLITE_OK==sessionBufferGrow(&pIn->buf, nNew, &rc) ){
rc = pIn->xInput(pIn->pIn, &pIn->buf.aBuf[pIn->buf.nBuf], &nNew);
if( nNew==0 ){
pIn->bEof = 1;
}else{
pIn->buf.nBuf += nNew;
}
}
pIn->aData = pIn->buf.aBuf;
pIn->nData = pIn->buf.nBuf;
}
}
return rc;
}
/*
** When this function is called, *ppRec points to the start of a record
** that contains nCol values. This function advances the pointer *ppRec
** until it points to the byte immediately following that record.
*/
static void sessionSkipRecord(
u8 **ppRec, /* IN/OUT: Record pointer */
int nCol /* Number of values in record */
){
u8 *aRec = *ppRec;
int i;
for(i=0; i<nCol; i++){
int eType = *aRec++;
if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){
int nByte;
aRec += sessionVarintGet((u8*)aRec, &nByte);
aRec += nByte;
}else if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
aRec += 8;
}
}
*ppRec = aRec;
}
/*
** This function sets the value of the sqlite3_value object passed as the
** first argument to a copy of the string or blob held in the aData[]
** buffer. SQLITE_OK is returned if successful, or SQLITE_NOMEM if an OOM
** error occurs.
*/
static int sessionValueSetStr(
sqlite3_value *pVal, /* Set the value of this object */
u8 *aData, /* Buffer containing string or blob data */
int nData, /* Size of buffer aData[] in bytes */
u8 enc /* String encoding (0 for blobs) */
){
/* In theory this code could just pass SQLITE_TRANSIENT as the final
** argument to sqlite3ValueSetStr() and have the copy created
** automatically. But doing so makes it difficult to detect any OOM
** error. Hence the code to create the copy externally. */
u8 *aCopy = sqlite3_malloc64((sqlite3_int64)nData+1);
if( aCopy==0 ) return SQLITE_NOMEM;
memcpy(aCopy, aData, nData);
sqlite3ValueSetStr(pVal, nData, (char*)aCopy, enc, sqlite3_free);
return SQLITE_OK;
}
/*
** Deserialize a single record from a buffer in memory. See "RECORD FORMAT"
** for details.
**
** When this function is called, *paChange points to the start of the record
** to deserialize. Assuming no error occurs, *paChange is set to point to
** one byte after the end of the same record before this function returns.
** If the argument abPK is NULL, then the record contains nCol values. Or,
** if abPK is other than NULL, then the record contains only the PK fields
** (in other words, it is a patchset DELETE record).
**
** If successful, each element of the apOut[] array (allocated by the caller)
** is set to point to an sqlite3_value object containing the value read
** from the corresponding position in the record. If that value is not
** included in the record (i.e. because the record is part of an UPDATE change
** and the field was not modified), the corresponding element of apOut[] is
** set to NULL.
**
** It is the responsibility of the caller to free all sqlite_value structures
** using sqlite3_free().
**
** If an error occurs, an SQLite error code (e.g. SQLITE_NOMEM) is returned.
** The apOut[] array may have been partially populated in this case.
*/
static int sessionReadRecord(
SessionInput *pIn, /* Input data */
int nCol, /* Number of values in record */
u8 *abPK, /* Array of primary key flags, or NULL */
sqlite3_value **apOut, /* Write values to this array */
int *pbEmpty
){
int i; /* Used to iterate through columns */
int rc = SQLITE_OK;
assert( pbEmpty==0 || *pbEmpty==0 );
if( pbEmpty ) *pbEmpty = 1;
for(i=0; i<nCol && rc==SQLITE_OK; i++){
int eType = 0; /* Type of value (SQLITE_NULL, TEXT etc.) */
if( abPK && abPK[i]==0 ) continue;
rc = sessionInputBuffer(pIn, 9);
if( rc==SQLITE_OK ){
if( pIn->iNext>=pIn->nData ){
rc = SQLITE_CORRUPT_BKPT;
}else{
eType = pIn->aData[pIn->iNext++];
assert( apOut[i]==0 );
if( eType ){
if( pbEmpty ) *pbEmpty = 0;
apOut[i] = sqlite3ValueNew(0);
if( !apOut[i] ) rc = SQLITE_NOMEM;
}
}
}
if( rc==SQLITE_OK ){
u8 *aVal = &pIn->aData[pIn->iNext];
if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){
int nByte;
pIn->iNext += sessionVarintGet(aVal, &nByte);
rc = sessionInputBuffer(pIn, nByte);
if( rc==SQLITE_OK ){
if( nByte<0 || nByte>pIn->nData-pIn->iNext ){
rc = SQLITE_CORRUPT_BKPT;
}else{
u8 enc = (eType==SQLITE_TEXT ? SQLITE_UTF8 : 0);
rc = sessionValueSetStr(apOut[i],&pIn->aData[pIn->iNext],nByte,enc);
pIn->iNext += nByte;
}
}
}
if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
sqlite3_int64 v = sessionGetI64(aVal);
if( eType==SQLITE_INTEGER ){
sqlite3VdbeMemSetInt64(apOut[i], v);
}else{
double d;
memcpy(&d, &v, 8);
sqlite3VdbeMemSetDouble(apOut[i], d);
}
pIn->iNext += 8;
}
}
}
return rc;
}
/*
** The input pointer currently points to the second byte of a table-header.
** Specifically, to the following:
**
** + number of columns in table (varint)
** + array of PK flags (1 byte per column),
** + table name (nul terminated).
**
** This function ensures that all of the above is present in the input
** buffer (i.e. that it can be accessed without any calls to xInput()).
** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
** The input pointer is not moved.
*/
static int sessionChangesetBufferTblhdr(SessionInput *pIn, int *pnByte){
int rc = SQLITE_OK;
int nCol = 0;
int nRead = 0;
rc = sessionInputBuffer(pIn, 9);
if( rc==SQLITE_OK ){
nRead += sessionVarintGet(&pIn->aData[pIn->iNext + nRead], &nCol);
/* The hard upper limit for the number of columns in an SQLite
** database table is, according to sqliteLimit.h, 32676. So
** consider any table-header that purports to have more than 65536
** columns to be corrupt. This is convenient because otherwise,
** if the (nCol>65536) condition below were omitted, a sufficiently
** large value for nCol may cause nRead to wrap around and become
** negative. Leading to a crash. */
if( nCol<0 || nCol>65536 ){
rc = SQLITE_CORRUPT_BKPT;
}else{
rc = sessionInputBuffer(pIn, nRead+nCol+100);
nRead += nCol;
}
}
while( rc==SQLITE_OK ){
while( (pIn->iNext + nRead)<pIn->nData && pIn->aData[pIn->iNext + nRead] ){
nRead++;
}
if( (pIn->iNext + nRead)<pIn->nData ) break;
rc = sessionInputBuffer(pIn, nRead + 100);
}
*pnByte = nRead+1;
return rc;
}
/*
** The input pointer currently points to the first byte of the first field
** of a record consisting of nCol columns. This function ensures the entire
** record is buffered. It does not move the input pointer.
**
** If successful, SQLITE_OK is returned and *pnByte is set to the size of
** the record in bytes. Otherwise, an SQLite error code is returned. The
** final value of *pnByte is undefined in this case.
*/
static int sessionChangesetBufferRecord(
SessionInput *pIn, /* Input data */
int nCol, /* Number of columns in record */
int *pnByte /* OUT: Size of record in bytes */
){
int rc = SQLITE_OK;
int nByte = 0;
int i;
for(i=0; rc==SQLITE_OK && i<nCol; i++){
int eType;
rc = sessionInputBuffer(pIn, nByte + 10);
if( rc==SQLITE_OK ){
eType = pIn->aData[pIn->iNext + nByte++];
if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){
int n;
nByte += sessionVarintGet(&pIn->aData[pIn->iNext+nByte], &n);
nByte += n;
rc = sessionInputBuffer(pIn, nByte);
}else if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
nByte += 8;
}
}
}
*pnByte = nByte;
return rc;
}
/*
** The input pointer currently points to the second byte of a table-header.
** Specifically, to the following:
**
** + number of columns in table (varint)
** + array of PK flags (1 byte per column),
** + table name (nul terminated).
**
** This function decodes the table-header and populates the p->nCol,
** p->zTab and p->abPK[] variables accordingly. The p->apValue[] array is
** also allocated or resized according to the new value of p->nCol. The
** input pointer is left pointing to the byte following the table header.
**
** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code
** is returned and the final values of the various fields enumerated above
** are undefined.
*/
static int sessionChangesetReadTblhdr(sqlite3_changeset_iter *p){
int rc;
int nCopy;
assert( p->rc==SQLITE_OK );
rc = sessionChangesetBufferTblhdr(&p->in, &nCopy);
if( rc==SQLITE_OK ){
int nByte;
int nVarint;
nVarint = sessionVarintGet(&p->in.aData[p->in.iNext], &p->nCol);
if( p->nCol>0 ){
nCopy -= nVarint;
p->in.iNext += nVarint;
nByte = p->nCol * sizeof(sqlite3_value*) * 2 + nCopy;
p->tblhdr.nBuf = 0;
sessionBufferGrow(&p->tblhdr, nByte, &rc);
}else{
rc = SQLITE_CORRUPT_BKPT;
}
}
if( rc==SQLITE_OK ){
size_t iPK = sizeof(sqlite3_value*)*p->nCol*2;
memset(p->tblhdr.aBuf, 0, iPK);
memcpy(&p->tblhdr.aBuf[iPK], &p->in.aData[p->in.iNext], nCopy);
p->in.iNext += nCopy;
}
p->apValue = (sqlite3_value**)p->tblhdr.aBuf;
if( p->apValue==0 ){
p->abPK = 0;
p->zTab = 0;
}else{
p->abPK = (u8*)&p->apValue[p->nCol*2];
p->zTab = p->abPK ? (char*)&p->abPK[p->nCol] : 0;
}
return (p->rc = rc);
}
/*
** Advance the changeset iterator to the next change. The differences between
** this function and sessionChangesetNext() are that
**
** * If pbEmpty is not NULL and the change is a no-op UPDATE (an UPDATE
** that modifies no columns), this function sets (*pbEmpty) to 1.
**
** * If the iterator is configured to skip no-op UPDATEs,
** sessionChangesetNext() does that. This function does not.
*/
static int sessionChangesetNextOne(
sqlite3_changeset_iter *p, /* Changeset iterator */
u8 **paRec, /* If non-NULL, store record pointer here */
int *pnRec, /* If non-NULL, store size of record here */
int *pbNew, /* If non-NULL, true if new table */
int *pbEmpty
){
int i;
u8 op;
assert( (paRec==0 && pnRec==0) || (paRec && pnRec) );
assert( pbEmpty==0 || *pbEmpty==0 );
/* If the iterator is in the error-state, return immediately. */
if( p->rc!=SQLITE_OK ) return p->rc;
/* Free the current contents of p->apValue[], if any. */
if( p->apValue ){
for(i=0; i<p->nCol*2; i++){
sqlite3ValueFree(p->apValue[i]);
}
memset(p->apValue, 0, sizeof(sqlite3_value*)*p->nCol*2);
}
/* Make sure the buffer contains at least 10 bytes of input data, or all
** remaining data if there are less than 10 bytes available. This is
** sufficient either for the 'T' or 'P' byte and the varint that follows
** it, or for the two single byte values otherwise. */
p->rc = sessionInputBuffer(&p->in, 2);
if( p->rc!=SQLITE_OK ) return p->rc;
/* If the iterator is already at the end of the changeset, return DONE. */
if( p->in.iNext>=p->in.nData ){
return SQLITE_DONE;
}
sessionDiscardData(&p->in);
p->in.iCurrent = p->in.iNext;
op = p->in.aData[p->in.iNext++];
while( op=='T' || op=='P' ){
if( pbNew ) *pbNew = 1;
p->bPatchset = (op=='P');
if( sessionChangesetReadTblhdr(p) ) return p->rc;
if( (p->rc = sessionInputBuffer(&p->in, 2)) ) return p->rc;
p->in.iCurrent = p->in.iNext;
if( p->in.iNext>=p->in.nData ) return SQLITE_DONE;
op = p->in.aData[p->in.iNext++];
}
if( p->zTab==0 || (p->bPatchset && p->bInvert) ){
/* The first record in the changeset is not a table header. Must be a
** corrupt changeset. */
assert( p->in.iNext==1 || p->zTab );
return (p->rc = SQLITE_CORRUPT_BKPT);
}
p->op = op;
p->bIndirect = p->in.aData[p->in.iNext++];
if( p->op!=SQLITE_UPDATE && p->op!=SQLITE_DELETE && p->op!=SQLITE_INSERT ){
return (p->rc = SQLITE_CORRUPT_BKPT);
}
if( paRec ){
int nVal; /* Number of values to buffer */
if( p->bPatchset==0 && op==SQLITE_UPDATE ){
nVal = p->nCol * 2;
}else if( p->bPatchset && op==SQLITE_DELETE ){
nVal = 0;
for(i=0; i<p->nCol; i++) if( p->abPK[i] ) nVal++;
}else{
nVal = p->nCol;
}
p->rc = sessionChangesetBufferRecord(&p->in, nVal, pnRec);
if( p->rc!=SQLITE_OK ) return p->rc;
*paRec = &p->in.aData[p->in.iNext];
p->in.iNext += *pnRec;
}else{
sqlite3_value **apOld = (p->bInvert ? &p->apValue[p->nCol] : p->apValue);
sqlite3_value **apNew = (p->bInvert ? p->apValue : &p->apValue[p->nCol]);
/* If this is an UPDATE or DELETE, read the old.* record. */
if( p->op!=SQLITE_INSERT && (p->bPatchset==0 || p->op==SQLITE_DELETE) ){
u8 *abPK = p->bPatchset ? p->abPK : 0;
p->rc = sessionReadRecord(&p->in, p->nCol, abPK, apOld, 0);
if( p->rc!=SQLITE_OK ) return p->rc;
}
/* If this is an INSERT or UPDATE, read the new.* record. */
if( p->op!=SQLITE_DELETE ){
p->rc = sessionReadRecord(&p->in, p->nCol, 0, apNew, pbEmpty);
if( p->rc!=SQLITE_OK ) return p->rc;
}
if( (p->bPatchset || p->bInvert) && p->op==SQLITE_UPDATE ){
/* If this is an UPDATE that is part of a patchset, then all PK and
** modified fields are present in the new.* record. The old.* record
** is currently completely empty. This block shifts the PK fields from
** new.* to old.*, to accommodate the code that reads these arrays. */
for(i=0; i<p->nCol; i++){
assert( p->bPatchset==0 || p->apValue[i]==0 );
if( p->abPK[i] ){
assert( p->apValue[i]==0 );
p->apValue[i] = p->apValue[i+p->nCol];
if( p->apValue[i]==0 ) return (p->rc = SQLITE_CORRUPT_BKPT);
p->apValue[i+p->nCol] = 0;
}
}
}else if( p->bInvert ){
if( p->op==SQLITE_INSERT ) p->op = SQLITE_DELETE;
else if( p->op==SQLITE_DELETE ) p->op = SQLITE_INSERT;
}
/* If this is an UPDATE that is part of a changeset, then check that
** there are no fields in the old.* record that are not (a) PK fields,
** or (b) also present in the new.* record.
**
** Such records are technically corrupt, but the rebaser was at one
** point generating them. Under most circumstances this is benign, but
** can cause spurious SQLITE_RANGE errors when applying the changeset. */
if( p->bPatchset==0 && p->op==SQLITE_UPDATE){
for(i=0; i<p->nCol; i++){
if( p->abPK[i]==0 && p->apValue[i+p->nCol]==0 ){
sqlite3ValueFree(p->apValue[i]);
p->apValue[i] = 0;
}
}
}
}
return SQLITE_ROW;
}
/*
** Advance the changeset iterator to the next change.
**
** If both paRec and pnRec are NULL, then this function works like the public
** API sqlite3changeset_next(). If SQLITE_ROW is returned, then the
** sqlite3changeset_new() and old() APIs may be used to query for values.
**
** Otherwise, if paRec and pnRec are not NULL, then a pointer to the change
** record is written to *paRec before returning and the number of bytes in
** the record to *pnRec.
**
** Either way, this function returns SQLITE_ROW if the iterator is
** successfully advanced to the next change in the changeset, an SQLite
** error code if an error occurs, or SQLITE_DONE if there are no further
** changes in the changeset.
*/
static int sessionChangesetNext(
sqlite3_changeset_iter *p, /* Changeset iterator */
u8 **paRec, /* If non-NULL, store record pointer here */
int *pnRec, /* If non-NULL, store size of record here */
int *pbNew /* If non-NULL, true if new table */
){
int bEmpty;
int rc;
do {
bEmpty = 0;
rc = sessionChangesetNextOne(p, paRec, pnRec, pbNew, &bEmpty);
}while( rc==SQLITE_ROW && p->bSkipEmpty && bEmpty);
return rc;
}
/*
** Advance an iterator created by sqlite3changeset_start() to the next
** change in the changeset. This function may return SQLITE_ROW, SQLITE_DONE
** or SQLITE_CORRUPT.
**
** This function may not be called on iterators passed to a conflict handler
** callback by changeset_apply().
*/
int sqlite3changeset_next(sqlite3_changeset_iter *p){
return sessionChangesetNext(p, 0, 0, 0);
}
/*
** The following function extracts information on the current change
** from a changeset iterator. It may only be called after changeset_next()
** has returned SQLITE_ROW.
*/
int sqlite3changeset_op(
sqlite3_changeset_iter *pIter, /* Iterator handle */
const char **pzTab, /* OUT: Pointer to table name */
int *pnCol, /* OUT: Number of columns in table */
int *pOp, /* OUT: SQLITE_INSERT, DELETE or UPDATE */
int *pbIndirect /* OUT: True if change is indirect */
){
*pOp = pIter->op;
*pnCol = pIter->nCol;
*pzTab = pIter->zTab;
if( pbIndirect ) *pbIndirect = pIter->bIndirect;
return SQLITE_OK;
}
/*
** Return information regarding the PRIMARY KEY and number of columns in
** the database table affected by the change that pIter currently points
** to. This function may only be called after changeset_next() returns
** SQLITE_ROW.
*/
int sqlite3changeset_pk(
sqlite3_changeset_iter *pIter, /* Iterator object */
unsigned char **pabPK, /* OUT: Array of boolean - true for PK cols */
int *pnCol /* OUT: Number of entries in output array */
){
*pabPK = pIter->abPK;
if( pnCol ) *pnCol = pIter->nCol;
return SQLITE_OK;
}
/*
** This function may only be called while the iterator is pointing to an
** SQLITE_UPDATE or SQLITE_DELETE change (see sqlite3changeset_op()).
** Otherwise, SQLITE_MISUSE is returned.
**
** It sets *ppValue to point to an sqlite3_value structure containing the
** iVal'th value in the old.* record. Or, if that particular value is not
** included in the record (because the change is an UPDATE and the field
** was not modified and is not a PK column), set *ppValue to NULL.
**
** If value iVal is out-of-range, SQLITE_RANGE is returned and *ppValue is
** not modified. Otherwise, SQLITE_OK.
*/
int sqlite3changeset_old(
sqlite3_changeset_iter *pIter, /* Changeset iterator */
int iVal, /* Index of old.* value to retrieve */
sqlite3_value **ppValue /* OUT: Old value (or NULL pointer) */
){
if( pIter->op!=SQLITE_UPDATE && pIter->op!=SQLITE_DELETE ){
return SQLITE_MISUSE;
}
if( iVal<0 || iVal>=pIter->nCol ){
return SQLITE_RANGE;
}
*ppValue = pIter->apValue[iVal];
return SQLITE_OK;
}
/*
** This function may only be called while the iterator is pointing to an
** SQLITE_UPDATE or SQLITE_INSERT change (see sqlite3changeset_op()).
** Otherwise, SQLITE_MISUSE is returned.
**
** It sets *ppValue to point to an sqlite3_value structure containing the
** iVal'th value in the new.* record. Or, if that particular value is not
** included in the record (because the change is an UPDATE and the field
** was not modified), set *ppValue to NULL.
**
** If value iVal is out-of-range, SQLITE_RANGE is returned and *ppValue is
** not modified. Otherwise, SQLITE_OK.
*/
int sqlite3changeset_new(
sqlite3_changeset_iter *pIter, /* Changeset iterator */
int iVal, /* Index of new.* value to retrieve */
sqlite3_value **ppValue /* OUT: New value (or NULL pointer) */
){
if( pIter->op!=SQLITE_UPDATE && pIter->op!=SQLITE_INSERT ){
return SQLITE_MISUSE;
}
if( iVal<0 || iVal>=pIter->nCol ){
return SQLITE_RANGE;
}
*ppValue = pIter->apValue[pIter->nCol+iVal];
return SQLITE_OK;
}
/*
** The following two macros are used internally. They are similar to the
** sqlite3changeset_new() and sqlite3changeset_old() functions, except that
** they omit all error checking and return a pointer to the requested value.
*/
#define sessionChangesetNew(pIter, iVal) (pIter)->apValue[(pIter)->nCol+(iVal)]
#define sessionChangesetOld(pIter, iVal) (pIter)->apValue[(iVal)]
/*
** This function may only be called with a changeset iterator that has been
** passed to an SQLITE_CHANGESET_DATA or SQLITE_CHANGESET_CONFLICT
** conflict-handler function. Otherwise, SQLITE_MISUSE is returned.
**
** If successful, *ppValue is set to point to an sqlite3_value structure
** containing the iVal'th value of the conflicting record.
**
** If value iVal is out-of-range or some other error occurs, an SQLite error
** code is returned. Otherwise, SQLITE_OK.
*/
int sqlite3changeset_conflict(
sqlite3_changeset_iter *pIter, /* Changeset iterator */
int iVal, /* Index of conflict record value to fetch */
sqlite3_value **ppValue /* OUT: Value from conflicting row */
){
if( !pIter->pConflict ){
return SQLITE_MISUSE;
}
if( iVal<0 || iVal>=pIter->nCol ){
return SQLITE_RANGE;
}
*ppValue = sqlite3_column_value(pIter->pConflict, iVal);
return SQLITE_OK;
}
/*
** This function may only be called with an iterator passed to an
** SQLITE_CHANGESET_FOREIGN_KEY conflict handler callback. In this case
** it sets the output variable to the total number of known foreign key
** violations in the destination database and returns SQLITE_OK.
**
** In all other cases this function returns SQLITE_MISUSE.
*/
int sqlite3changeset_fk_conflicts(
sqlite3_changeset_iter *pIter, /* Changeset iterator */
int *pnOut /* OUT: Number of FK violations */
){
if( pIter->pConflict || pIter->apValue ){
return SQLITE_MISUSE;
}
*pnOut = pIter->nCol;
return SQLITE_OK;
}
/*
** Finalize an iterator allocated with sqlite3changeset_start().
**
** This function may not be called on iterators passed to a conflict handler
** callback by changeset_apply().
*/
int sqlite3changeset_finalize(sqlite3_changeset_iter *p){
int rc = SQLITE_OK;
if( p ){
int i; /* Used to iterate through p->apValue[] */
rc = p->rc;
if( p->apValue ){
for(i=0; i<p->nCol*2; i++) sqlite3ValueFree(p->apValue[i]);
}
sqlite3_free(p->tblhdr.aBuf);
sqlite3_free(p->in.buf.aBuf);
sqlite3_free(p);
}
return rc;
}
static int sessionChangesetInvert(
SessionInput *pInput, /* Input changeset */
int (*xOutput)(void *pOut, const void *pData, int nData),
void *pOut,
int *pnInverted, /* OUT: Number of bytes in output changeset */
void **ppInverted /* OUT: Inverse of pChangeset */
){
int rc = SQLITE_OK; /* Return value */
SessionBuffer sOut; /* Output buffer */
int nCol = 0; /* Number of cols in current table */
u8 *abPK = 0; /* PK array for current table */
sqlite3_value **apVal = 0; /* Space for values for UPDATE inversion */
SessionBuffer sPK = {0, 0, 0}; /* PK array for current table */
/* Initialize the output buffer */
memset(&sOut, 0, sizeof(SessionBuffer));
/* Zero the output variables in case an error occurs. */
if( ppInverted ){
*ppInverted = 0;
*pnInverted = 0;
}
while( 1 ){
u8 eType;
/* Test for EOF. */
if( (rc = sessionInputBuffer(pInput, 2)) ) goto finished_invert;
if( pInput->iNext>=pInput->nData ) break;
eType = pInput->aData[pInput->iNext];
switch( eType ){
case 'T': {
/* A 'table' record consists of:
**
** * A constant 'T' character,
** * Number of columns in said table (a varint),
** * An array of nCol bytes (sPK),
** * A nul-terminated table name.
*/
int nByte;
int nVar;
pInput->iNext++;
if( (rc = sessionChangesetBufferTblhdr(pInput, &nByte)) ){
goto finished_invert;
}
nVar = sessionVarintGet(&pInput->aData[pInput->iNext], &nCol);
sPK.nBuf = 0;
sessionAppendBlob(&sPK, &pInput->aData[pInput->iNext+nVar], nCol, &rc);
sessionAppendByte(&sOut, eType, &rc);
sessionAppendBlob(&sOut, &pInput->aData[pInput->iNext], nByte, &rc);
if( rc ) goto finished_invert;
pInput->iNext += nByte;
sqlite3_free(apVal);
apVal = 0;
abPK = sPK.aBuf;
break;
}
case SQLITE_INSERT:
case SQLITE_DELETE: {
int nByte;
int bIndirect = pInput->aData[pInput->iNext+1];
int eType2 = (eType==SQLITE_DELETE ? SQLITE_INSERT : SQLITE_DELETE);
pInput->iNext += 2;
assert( rc==SQLITE_OK );
rc = sessionChangesetBufferRecord(pInput, nCol, &nByte);
sessionAppendByte(&sOut, eType2, &rc);
sessionAppendByte(&sOut, bIndirect, &rc);
sessionAppendBlob(&sOut, &pInput->aData[pInput->iNext], nByte, &rc);
pInput->iNext += nByte;
if( rc ) goto finished_invert;
break;
}
case SQLITE_UPDATE: {
int iCol;
if( 0==apVal ){
apVal = (sqlite3_value **)sqlite3_malloc64(sizeof(apVal[0])*nCol*2);
if( 0==apVal ){
rc = SQLITE_NOMEM;
goto finished_invert;
}
memset(apVal, 0, sizeof(apVal[0])*nCol*2);
}
/* Write the header for the new UPDATE change. Same as the original. */
sessionAppendByte(&sOut, eType, &rc);
sessionAppendByte(&sOut, pInput->aData[pInput->iNext+1], &rc);
/* Read the old.* and new.* records for the update change. */
pInput->iNext += 2;
rc = sessionReadRecord(pInput, nCol, 0, &apVal[0], 0);
if( rc==SQLITE_OK ){
rc = sessionReadRecord(pInput, nCol, 0, &apVal[nCol], 0);
}
/* Write the new old.* record. Consists of the PK columns from the
** original old.* record, and the other values from the original
** new.* record. */
for(iCol=0; iCol<nCol; iCol++){
sqlite3_value *pVal = apVal[iCol + (abPK[iCol] ? 0 : nCol)];
sessionAppendValue(&sOut, pVal, &rc);
}
/* Write the new new.* record. Consists of a copy of all values
** from the original old.* record, except for the PK columns, which
** are set to "undefined". */
for(iCol=0; iCol<nCol; iCol++){
sqlite3_value *pVal = (abPK[iCol] ? 0 : apVal[iCol]);
sessionAppendValue(&sOut, pVal, &rc);
}
for(iCol=0; iCol<nCol*2; iCol++){
sqlite3ValueFree(apVal[iCol]);
}
memset(apVal, 0, sizeof(apVal[0])*nCol*2);
if( rc!=SQLITE_OK ){
goto finished_invert;
}
break;
}
default:
rc = SQLITE_CORRUPT_BKPT;
goto finished_invert;
}
assert( rc==SQLITE_OK );
if( xOutput && sOut.nBuf>=sessions_strm_chunk_size ){
rc = xOutput(pOut, sOut.aBuf, sOut.nBuf);
sOut.nBuf = 0;
if( rc!=SQLITE_OK ) goto finished_invert;
}
}
assert( rc==SQLITE_OK );
if( pnInverted && ALWAYS(ppInverted) ){
*pnInverted = sOut.nBuf;
*ppInverted = sOut.aBuf;
sOut.aBuf = 0;
}else if( sOut.nBuf>0 && ALWAYS(xOutput!=0) ){
rc = xOutput(pOut, sOut.aBuf, sOut.nBuf);
}
finished_invert:
sqlite3_free(sOut.aBuf);
sqlite3_free(apVal);
sqlite3_free(sPK.aBuf);
return rc;
}
/*
** Invert a changeset object.
*/
int sqlite3changeset_invert(
int nChangeset, /* Number of bytes in input */
const void *pChangeset, /* Input changeset */
int *pnInverted, /* OUT: Number of bytes in output changeset */
void **ppInverted /* OUT: Inverse of pChangeset */
){
SessionInput sInput;
/* Set up the input stream */
memset(&sInput, 0, sizeof(SessionInput));
sInput.nData = nChangeset;
sInput.aData = (u8*)pChangeset;
return sessionChangesetInvert(&sInput, 0, 0, pnInverted, ppInverted);
}
/*
** Streaming version of sqlite3changeset_invert().
*/
int sqlite3changeset_invert_strm(
int (*xInput)(void *pIn, void *pData, int *pnData),
void *pIn,
int (*xOutput)(void *pOut, const void *pData, int nData),
void *pOut
){
SessionInput sInput;
int rc;
/* Set up the input stream */
memset(&sInput, 0, sizeof(SessionInput));
sInput.xInput = xInput;
sInput.pIn = pIn;
rc = sessionChangesetInvert(&sInput, xOutput, pOut, 0, 0);
sqlite3_free(sInput.buf.aBuf);
return rc;
}
typedef struct SessionUpdate SessionUpdate;
struct SessionUpdate {
sqlite3_stmt *pStmt;
u32 *aMask;
SessionUpdate *pNext;
};
typedef struct SessionApplyCtx SessionApplyCtx;
struct SessionApplyCtx {
sqlite3 *db;
sqlite3_stmt *pDelete; /* DELETE statement */
sqlite3_stmt *pInsert; /* INSERT statement */
sqlite3_stmt *pSelect; /* SELECT statement */
int nCol; /* Size of azCol[] and abPK[] arrays */
const char **azCol; /* Array of column names */
u8 *abPK; /* Boolean array - true if column is in PK */
u32 *aUpdateMask; /* Used by sessionUpdateFind */
SessionUpdate *pUp;
int bStat1; /* True if table is sqlite_stat1 */
int bDeferConstraints; /* True to defer constraints */
int bInvertConstraints; /* Invert when iterating constraints buffer */
SessionBuffer constraints; /* Deferred constraints are stored here */
SessionBuffer rebase; /* Rebase information (if any) here */
u8 bRebaseStarted; /* If table header is already in rebase */
u8 bRebase; /* True to collect rebase information */
u8 bIgnoreNoop; /* True to ignore no-op conflicts */
int bRowid;
};
/* Number of prepared UPDATE statements to cache. */
#define SESSION_UPDATE_CACHE_SZ 12
/*
** Find a prepared UPDATE statement suitable for the UPDATE step currently
** being visited by the iterator. The UPDATE is of the form:
**
** UPDATE tbl SET col = ?, col2 = ? WHERE pk1 IS ? AND pk2 IS ?
*/
static int sessionUpdateFind(
sqlite3_changeset_iter *pIter,
SessionApplyCtx *p,
int bPatchset,
sqlite3_stmt **ppStmt
){
int rc = SQLITE_OK;
SessionUpdate *pUp = 0;
int nCol = pIter->nCol;
int nU32 = (pIter->nCol+33)/32;
int ii;
if( p->aUpdateMask==0 ){
p->aUpdateMask = sqlite3_malloc(nU32*sizeof(u32));
if( p->aUpdateMask==0 ){
rc = SQLITE_NOMEM;
}
}
if( rc==SQLITE_OK ){
memset(p->aUpdateMask, 0, nU32*sizeof(u32));
rc = SQLITE_CORRUPT;
for(ii=0; ii<pIter->nCol; ii++){
if( sessionChangesetNew(pIter, ii) ){
p->aUpdateMask[ii/32] |= (1<<(ii%32));
rc = SQLITE_OK;
}
}
}
if( rc==SQLITE_OK ){
if( bPatchset ) p->aUpdateMask[nCol/32] |= (1<<(nCol%32));
if( p->pUp ){
int nUp = 0;
SessionUpdate **pp = &p->pUp;
while( 1 ){
nUp++;
if( 0==memcmp(p->aUpdateMask, (*pp)->aMask, nU32*sizeof(u32)) ){
pUp = *pp;
*pp = pUp->pNext;
pUp->pNext = p->pUp;
p->pUp = pUp;
break;
}
if( (*pp)->pNext ){
pp = &(*pp)->pNext;
}else{
if( nUp>=SESSION_UPDATE_CACHE_SZ ){
sqlite3_finalize((*pp)->pStmt);
sqlite3_free(*pp);
*pp = 0;
}
break;
}
}
}
if( pUp==0 ){
int nByte = sizeof(SessionUpdate) * nU32*sizeof(u32);
int bStat1 = (sqlite3_stricmp(pIter->zTab, "sqlite_stat1")==0);
pUp = (SessionUpdate*)sqlite3_malloc(nByte);
if( pUp==0 ){
rc = SQLITE_NOMEM;
}else{
const char *zSep = "";
SessionBuffer buf;
memset(&buf, 0, sizeof(buf));
pUp->aMask = (u32*)&pUp[1];
memcpy(pUp->aMask, p->aUpdateMask, nU32*sizeof(u32));
sessionAppendStr(&buf, "UPDATE main.", &rc);
sessionAppendIdent(&buf, pIter->zTab, &rc);
sessionAppendStr(&buf, " SET ", &rc);
/* Create the assignments part of the UPDATE */
for(ii=0; ii<pIter->nCol; ii++){
if( p->abPK[ii]==0 && sessionChangesetNew(pIter, ii) ){
sessionAppendStr(&buf, zSep, &rc);
sessionAppendIdent(&buf, p->azCol[ii], &rc);
sessionAppendStr(&buf, " = ?", &rc);
sessionAppendInteger(&buf, ii*2+1, &rc);
zSep = ", ";
}
}
/* Create the WHERE clause part of the UPDATE */
zSep = "";
sessionAppendStr(&buf, " WHERE ", &rc);
for(ii=0; ii<pIter->nCol; ii++){
if( p->abPK[ii] || (bPatchset==0 && sessionChangesetOld(pIter, ii)) ){
sessionAppendStr(&buf, zSep, &rc);
if( bStat1 && ii==1 ){
assert( sqlite3_stricmp(p->azCol[ii], "idx")==0 );
sessionAppendStr(&buf,
"idx IS CASE "
"WHEN length(?4)=0 AND typeof(?4)='blob' THEN NULL "
"ELSE ?4 END ", &rc
);
}else{
sessionAppendIdent(&buf, p->azCol[ii], &rc);
sessionAppendStr(&buf, " IS ?", &rc);
sessionAppendInteger(&buf, ii*2+2, &rc);
}
zSep = " AND ";
}
}
if( rc==SQLITE_OK ){
char *zSql = (char*)buf.aBuf;
rc = sqlite3_prepare_v2(p->db, zSql, buf.nBuf, &pUp->pStmt, 0);
}
if( rc!=SQLITE_OK ){
sqlite3_free(pUp);
pUp = 0;
}else{
pUp->pNext = p->pUp;
p->pUp = pUp;
}
sqlite3_free(buf.aBuf);
}
}
}
assert( (rc==SQLITE_OK)==(pUp!=0) );
if( pUp ){
*ppStmt = pUp->pStmt;
}else{
*ppStmt = 0;
}
return rc;
}
/*
** Free all cached UPDATE statements.
*/
static void sessionUpdateFree(SessionApplyCtx *p){
SessionUpdate *pUp;
SessionUpdate *pNext;
for(pUp=p->pUp; pUp; pUp=pNext){
pNext = pUp->pNext;
sqlite3_finalize(pUp->pStmt);
sqlite3_free(pUp);
}
p->pUp = 0;
sqlite3_free(p->aUpdateMask);
p->aUpdateMask = 0;
}
/*
** Formulate a statement to DELETE a row from database db. Assuming a table
** structure like this:
**
** CREATE TABLE x(a, b, c, d, PRIMARY KEY(a, c));
**
** The DELETE statement looks like this:
**
** DELETE FROM x WHERE a = :1 AND c = :3 AND (:5 OR b IS :2 AND d IS :4)
**
** Variable :5 (nCol+1) is a boolean. It should be set to 0 if we require
** matching b and d values, or 1 otherwise. The second case comes up if the
** conflict handler is invoked with NOTFOUND and returns CHANGESET_REPLACE.
**
** If successful, SQLITE_OK is returned and SessionApplyCtx.pDelete is left
** pointing to the prepared version of the SQL statement.
*/
static int sessionDeleteRow(
sqlite3 *db, /* Database handle */
const char *zTab, /* Table name */
SessionApplyCtx *p /* Session changeset-apply context */
){
int i;
const char *zSep = "";
int rc = SQLITE_OK;
SessionBuffer buf = {0, 0, 0};
int nPk = 0;
sessionAppendStr(&buf, "DELETE FROM main.", &rc);
sessionAppendIdent(&buf, zTab, &rc);
sessionAppendStr(&buf, " WHERE ", &rc);
for(i=0; i<p->nCol; i++){
if( p->abPK[i] ){
nPk++;
sessionAppendStr(&buf, zSep, &rc);
sessionAppendIdent(&buf, p->azCol[i], &rc);
sessionAppendStr(&buf, " = ?", &rc);
sessionAppendInteger(&buf, i+1, &rc);
zSep = " AND ";
}
}
if( nPk<p->nCol ){
sessionAppendStr(&buf, " AND (?", &rc);
sessionAppendInteger(&buf, p->nCol+1, &rc);
sessionAppendStr(&buf, " OR ", &rc);
zSep = "";
for(i=0; i<p->nCol; i++){
if( !p->abPK[i] ){
sessionAppendStr(&buf, zSep, &rc);
sessionAppendIdent(&buf, p->azCol[i], &rc);
sessionAppendStr(&buf, " IS ?", &rc);
sessionAppendInteger(&buf, i+1, &rc);
zSep = "AND ";
}
}
sessionAppendStr(&buf, ")", &rc);
}
if( rc==SQLITE_OK ){
rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, &p->pDelete, 0);
}
sqlite3_free(buf.aBuf);
return rc;
}
/*
** Formulate and prepare an SQL statement to query table zTab by primary
** key. Assuming the following table structure:
**
** CREATE TABLE x(a, b, c, d, PRIMARY KEY(a, c));
**
** The SELECT statement looks like this:
**
** SELECT * FROM x WHERE a = ?1 AND c = ?3
**
** If successful, SQLITE_OK is returned and SessionApplyCtx.pSelect is left
** pointing to the prepared version of the SQL statement.
*/
static int sessionSelectRow(
sqlite3 *db, /* Database handle */
const char *zTab, /* Table name */
SessionApplyCtx *p /* Session changeset-apply context */
){
/* TODO */
return sessionSelectStmt(db, p->bIgnoreNoop,
"main", zTab, p->bRowid, p->nCol, p->azCol, p->abPK, &p->pSelect
);
}
/*
** Formulate and prepare an INSERT statement to add a record to table zTab.
** For example:
**
** INSERT INTO main."zTab" VALUES(?1, ?2, ?3 ...);
**
** If successful, SQLITE_OK is returned and SessionApplyCtx.pInsert is left
** pointing to the prepared version of the SQL statement.
*/
static int sessionInsertRow(
sqlite3 *db, /* Database handle */
const char *zTab, /* Table name */
SessionApplyCtx *p /* Session changeset-apply context */
){
int rc = SQLITE_OK;
int i;
SessionBuffer buf = {0, 0, 0};
sessionAppendStr(&buf, "INSERT INTO main.", &rc);
sessionAppendIdent(&buf, zTab, &rc);
sessionAppendStr(&buf, "(", &rc);
for(i=0; i<p->nCol; i++){
if( i!=0 ) sessionAppendStr(&buf, ", ", &rc);
sessionAppendIdent(&buf, p->azCol[i], &rc);
}
sessionAppendStr(&buf, ") VALUES(?", &rc);
for(i=1; i<p->nCol; i++){
sessionAppendStr(&buf, ", ?", &rc);
}
sessionAppendStr(&buf, ")", &rc);
if( rc==SQLITE_OK ){
rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, &p->pInsert, 0);
}
sqlite3_free(buf.aBuf);
return rc;
}
static int sessionPrepare(sqlite3 *db, sqlite3_stmt **pp, const char *zSql){
return sqlite3_prepare_v2(db, zSql, -1, pp, 0);
}
/*
** Prepare statements for applying changes to the sqlite_stat1 table.
** These are similar to those created by sessionSelectRow(),
** sessionInsertRow(), sessionUpdateRow() and sessionDeleteRow() for
** other tables.
*/
static int sessionStat1Sql(sqlite3 *db, SessionApplyCtx *p){
int rc = sessionSelectRow(db, "sqlite_stat1", p);
if( rc==SQLITE_OK ){
rc = sessionPrepare(db, &p->pInsert,
"INSERT INTO main.sqlite_stat1 VALUES(?1, "
"CASE WHEN length(?2)=0 AND typeof(?2)='blob' THEN NULL ELSE ?2 END, "
"?3)"
);
}
if( rc==SQLITE_OK ){
rc = sessionPrepare(db, &p->pDelete,
"DELETE FROM main.sqlite_stat1 WHERE tbl=?1 AND idx IS "
"CASE WHEN length(?2)=0 AND typeof(?2)='blob' THEN NULL ELSE ?2 END "
"AND (?4 OR stat IS ?3)"
);
}
return rc;
}
/*
** A wrapper around sqlite3_bind_value() that detects an extra problem.
** See comments in the body of this function for details.
*/
static int sessionBindValue(
sqlite3_stmt *pStmt, /* Statement to bind value to */
int i, /* Parameter number to bind to */
sqlite3_value *pVal /* Value to bind */
){
int eType = sqlite3_value_type(pVal);
/* COVERAGE: The (pVal->z==0) branch is never true using current versions
** of SQLite. If a malloc fails in an sqlite3_value_xxx() function, either
** the (pVal->z) variable remains as it was or the type of the value is
** set to SQLITE_NULL. */
if( (eType==SQLITE_TEXT || eType==SQLITE_BLOB) && pVal->z==0 ){
/* This condition occurs when an earlier OOM in a call to
** sqlite3_value_text() or sqlite3_value_blob() (perhaps from within
** a conflict-handler) has zeroed the pVal->z pointer. Return NOMEM. */
return SQLITE_NOMEM;
}
return sqlite3_bind_value(pStmt, i, pVal);
}
/*
** Iterator pIter must point to an SQLITE_INSERT entry. This function
** transfers new.* values from the current iterator entry to statement
** pStmt. The table being inserted into has nCol columns.
**
** New.* value $i from the iterator is bound to variable ($i+1) of
** statement pStmt. If parameter abPK is NULL, all values from 0 to (nCol-1)
** are transfered to the statement. Otherwise, if abPK is not NULL, it points
** to an array nCol elements in size. In this case only those values for
** which abPK[$i] is true are read from the iterator and bound to the
** statement.
**
** An SQLite error code is returned if an error occurs. Otherwise, SQLITE_OK.
*/
static int sessionBindRow(
sqlite3_changeset_iter *pIter, /* Iterator to read values from */
int(*xValue)(sqlite3_changeset_iter *, int, sqlite3_value **),
int nCol, /* Number of columns */
u8 *abPK, /* If not NULL, bind only if true */
sqlite3_stmt *pStmt /* Bind values to this statement */
){
int i;
int rc = SQLITE_OK;
/* Neither sqlite3changeset_old or sqlite3changeset_new can fail if the
** argument iterator points to a suitable entry. Make sure that xValue
** is one of these to guarantee that it is safe to ignore the return
** in the code below. */
assert( xValue==sqlite3changeset_old || xValue==sqlite3changeset_new );
for(i=0; rc==SQLITE_OK && i<nCol; i++){
if( !abPK || abPK[i] ){
sqlite3_value *pVal = 0;
(void)xValue(pIter, i, &pVal);
if( pVal==0 ){
/* The value in the changeset was "undefined". This indicates a
** corrupt changeset blob. */
rc = SQLITE_CORRUPT_BKPT;
}else{
rc = sessionBindValue(pStmt, i+1, pVal);
}
}
}
return rc;
}
/*
** SQL statement pSelect is as generated by the sessionSelectRow() function.
** This function binds the primary key values from the change that changeset
** iterator pIter points to to the SELECT and attempts to seek to the table
** entry. If a row is found, the SELECT statement left pointing at the row
** and SQLITE_ROW is returned. Otherwise, if no row is found and no error
** has occured, the statement is reset and SQLITE_OK is returned. If an
** error occurs, the statement is reset and an SQLite error code is returned.
**
** If this function returns SQLITE_ROW, the caller must eventually reset()
** statement pSelect. If any other value is returned, the statement does
** not require a reset().
**
** If the iterator currently points to an INSERT record, bind values from the
** new.* record to the SELECT statement. Or, if it points to a DELETE or
** UPDATE, bind values from the old.* record.
*/
static int sessionSeekToRow(
sqlite3_changeset_iter *pIter, /* Changeset iterator */
SessionApplyCtx *p
){
sqlite3_stmt *pSelect = p->pSelect;
int rc; /* Return code */
int nCol; /* Number of columns in table */
int op; /* Changset operation (SQLITE_UPDATE etc.) */
const char *zDummy; /* Unused */
sqlite3_clear_bindings(pSelect);
sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0);
rc = sessionBindRow(pIter,
op==SQLITE_INSERT ? sqlite3changeset_new : sqlite3changeset_old,
nCol, p->abPK, pSelect
);
if( op!=SQLITE_DELETE && p->bIgnoreNoop ){
int ii;
for(ii=0; rc==SQLITE_OK && ii<nCol; ii++){
if( p->abPK[ii]==0 ){
sqlite3_value *pVal = 0;
sqlite3changeset_new(pIter, ii, &pVal);
sqlite3_bind_int(pSelect, ii+1+nCol, (pVal==0));
if( pVal ) rc = sessionBindValue(pSelect, ii+1, pVal);
}
}
}
if( rc==SQLITE_OK ){
rc = sqlite3_step(pSelect);
if( rc!=SQLITE_ROW ) rc = sqlite3_reset(pSelect);
}
return rc;
}
/*
** This function is called from within sqlite3changeset_apply_v2() when
** a conflict is encountered and resolved using conflict resolution
** mode eType (either SQLITE_CHANGESET_OMIT or SQLITE_CHANGESET_REPLACE)..
** It adds a conflict resolution record to the buffer in
** SessionApplyCtx.rebase, which will eventually be returned to the caller
** of apply_v2() as the "rebase" buffer.
**
** Return SQLITE_OK if successful, or an SQLite error code otherwise.
*/
static int sessionRebaseAdd(
SessionApplyCtx *p, /* Apply context */
int eType, /* Conflict resolution (OMIT or REPLACE) */
sqlite3_changeset_iter *pIter /* Iterator pointing at current change */
){
int rc = SQLITE_OK;
if( p->bRebase ){
int i;
int eOp = pIter->op;
if( p->bRebaseStarted==0 ){
/* Append a table-header to the rebase buffer */
const char *zTab = pIter->zTab;
sessionAppendByte(&p->rebase, 'T', &rc);
sessionAppendVarint(&p->rebase, p->nCol, &rc);
sessionAppendBlob(&p->rebase, p->abPK, p->nCol, &rc);
sessionAppendBlob(&p->rebase, (u8*)zTab, (int)strlen(zTab)+1, &rc);
p->bRebaseStarted = 1;
}
assert( eType==SQLITE_CHANGESET_REPLACE||eType==SQLITE_CHANGESET_OMIT );
assert( eOp==SQLITE_DELETE || eOp==SQLITE_INSERT || eOp==SQLITE_UPDATE );
sessionAppendByte(&p->rebase,
(eOp==SQLITE_DELETE ? SQLITE_DELETE : SQLITE_INSERT), &rc
);
sessionAppendByte(&p->rebase, (eType==SQLITE_CHANGESET_REPLACE), &rc);
for(i=0; i<p->nCol; i++){
sqlite3_value *pVal = 0;
if( eOp==SQLITE_DELETE || (eOp==SQLITE_UPDATE && p->abPK[i]) ){
sqlite3changeset_old(pIter, i, &pVal);
}else{
sqlite3changeset_new(pIter, i, &pVal);
}
sessionAppendValue(&p->rebase, pVal, &rc);
}
}
return rc;
}
/*
** Invoke the conflict handler for the change that the changeset iterator
** currently points to.
**
** Argument eType must be either CHANGESET_DATA or CHANGESET_CONFLICT.
** If argument pbReplace is NULL, then the type of conflict handler invoked
** depends solely on eType, as follows:
**
** eType value Value passed to xConflict
** -------------------------------------------------
** CHANGESET_DATA CHANGESET_NOTFOUND
** CHANGESET_CONFLICT CHANGESET_CONSTRAINT
**
** Or, if pbReplace is not NULL, then an attempt is made to find an existing
** record with the same primary key as the record about to be deleted, updated
** or inserted. If such a record can be found, it is available to the conflict
** handler as the "conflicting" record. In this case the type of conflict
** handler invoked is as follows:
**
** eType value PK Record found? Value passed to xConflict
** ----------------------------------------------------------------
** CHANGESET_DATA Yes CHANGESET_DATA
** CHANGESET_DATA No CHANGESET_NOTFOUND
** CHANGESET_CONFLICT Yes CHANGESET_CONFLICT
** CHANGESET_CONFLICT No CHANGESET_CONSTRAINT
**
** If pbReplace is not NULL, and a record with a matching PK is found, and
** the conflict handler function returns SQLITE_CHANGESET_REPLACE, *pbReplace
** is set to non-zero before returning SQLITE_OK.
**
** If the conflict handler returns SQLITE_CHANGESET_ABORT, SQLITE_ABORT is
** returned. Or, if the conflict handler returns an invalid value,
** SQLITE_MISUSE. If the conflict handler returns SQLITE_CHANGESET_OMIT,
** this function returns SQLITE_OK.
*/
static int sessionConflictHandler(
int eType, /* Either CHANGESET_DATA or CONFLICT */
SessionApplyCtx *p, /* changeset_apply() context */
sqlite3_changeset_iter *pIter, /* Changeset iterator */
int(*xConflict)(void *, int, sqlite3_changeset_iter*),
void *pCtx, /* First argument for conflict handler */
int *pbReplace /* OUT: Set to true if PK row is found */
){
int res = 0; /* Value returned by conflict handler */
int rc;
int nCol;
int op;
const char *zDummy;
sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0);
assert( eType==SQLITE_CHANGESET_CONFLICT || eType==SQLITE_CHANGESET_DATA );
assert( SQLITE_CHANGESET_CONFLICT+1==SQLITE_CHANGESET_CONSTRAINT );
assert( SQLITE_CHANGESET_DATA+1==SQLITE_CHANGESET_NOTFOUND );
/* Bind the new.* PRIMARY KEY values to the SELECT statement. */
if( pbReplace ){
rc = sessionSeekToRow(pIter, p);
}else{
rc = SQLITE_OK;
}
if( rc==SQLITE_ROW ){
/* There exists another row with the new.* primary key. */
if( p->bIgnoreNoop
&& sqlite3_column_int(p->pSelect, sqlite3_column_count(p->pSelect)-1)
){
res = SQLITE_CHANGESET_OMIT;
}else{
pIter->pConflict = p->pSelect;
res = xConflict(pCtx, eType, pIter);
pIter->pConflict = 0;
}
rc = sqlite3_reset(p->pSelect);
}else if( rc==SQLITE_OK ){
if( p->bDeferConstraints && eType==SQLITE_CHANGESET_CONFLICT ){
/* Instead of invoking the conflict handler, append the change blob
** to the SessionApplyCtx.constraints buffer. */
u8 *aBlob = &pIter->in.aData[pIter->in.iCurrent];
int nBlob = pIter->in.iNext - pIter->in.iCurrent;
sessionAppendBlob(&p->constraints, aBlob, nBlob, &rc);
return SQLITE_OK;
}else{
/* No other row with the new.* primary key. */
res = xConflict(pCtx, eType+1, pIter);
if( res==SQLITE_CHANGESET_REPLACE ) rc = SQLITE_MISUSE;
}
}
if( rc==SQLITE_OK ){
switch( res ){
case SQLITE_CHANGESET_REPLACE:
assert( pbReplace );
*pbReplace = 1;
break;
case SQLITE_CHANGESET_OMIT:
break;
case SQLITE_CHANGESET_ABORT:
rc = SQLITE_ABORT;
break;
default:
rc = SQLITE_MISUSE;
break;
}
if( rc==SQLITE_OK ){
rc = sessionRebaseAdd(p, res, pIter);
}
}
return rc;
}
/*
** Attempt to apply the change that the iterator passed as the first argument
** currently points to to the database. If a conflict is encountered, invoke
** the conflict handler callback.
**
** If argument pbRetry is NULL, then ignore any CHANGESET_DATA conflict. If
** one is encountered, update or delete the row with the matching primary key
** instead. Or, if pbRetry is not NULL and a CHANGESET_DATA conflict occurs,
** invoke the conflict handler. If it returns CHANGESET_REPLACE, set *pbRetry
** to true before returning. In this case the caller will invoke this function
** again, this time with pbRetry set to NULL.
**
** If argument pbReplace is NULL and a CHANGESET_CONFLICT conflict is
** encountered invoke the conflict handler with CHANGESET_CONSTRAINT instead.
** Or, if pbReplace is not NULL, invoke it with CHANGESET_CONFLICT. If such
** an invocation returns SQLITE_CHANGESET_REPLACE, set *pbReplace to true
** before retrying. In this case the caller attempts to remove the conflicting
** row before invoking this function again, this time with pbReplace set
** to NULL.
**
** If any conflict handler returns SQLITE_CHANGESET_ABORT, this function
** returns SQLITE_ABORT. Otherwise, if no error occurs, SQLITE_OK is
** returned.
*/
static int sessionApplyOneOp(
sqlite3_changeset_iter *pIter, /* Changeset iterator */
SessionApplyCtx *p, /* changeset_apply() context */
int(*xConflict)(void *, int, sqlite3_changeset_iter *),
void *pCtx, /* First argument for the conflict handler */
int *pbReplace, /* OUT: True to remove PK row and retry */
int *pbRetry /* OUT: True to retry. */
){
const char *zDummy;
int op;
int nCol;
int rc = SQLITE_OK;
assert( p->pDelete && p->pInsert && p->pSelect );
assert( p->azCol && p->abPK );
assert( !pbReplace || *pbReplace==0 );
sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0);
if( op==SQLITE_DELETE ){
/* Bind values to the DELETE statement. If conflict handling is required,
** bind values for all columns and set bound variable (nCol+1) to true.
** Or, if conflict handling is not required, bind just the PK column
** values and, if it exists, set (nCol+1) to false. Conflict handling
** is not required if:
**
** * this is a patchset, or
** * (pbRetry==0), or
** * all columns of the table are PK columns (in this case there is
** no (nCol+1) variable to bind to).
*/
u8 *abPK = (pIter->bPatchset ? p->abPK : 0);
rc = sessionBindRow(pIter, sqlite3changeset_old, nCol, abPK, p->pDelete);
if( rc==SQLITE_OK && sqlite3_bind_parameter_count(p->pDelete)>nCol ){
rc = sqlite3_bind_int(p->pDelete, nCol+1, (pbRetry==0 || abPK));
}
if( rc!=SQLITE_OK ) return rc;
sqlite3_step(p->pDelete);
rc = sqlite3_reset(p->pDelete);
if( rc==SQLITE_OK && sqlite3_changes(p->db)==0 && p->bIgnoreNoop==0 ){
rc = sessionConflictHandler(
SQLITE_CHANGESET_DATA, p, pIter, xConflict, pCtx, pbRetry
);
}else if( (rc&0xff)==SQLITE_CONSTRAINT ){
rc = sessionConflictHandler(
SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, 0
);
}
}else if( op==SQLITE_UPDATE ){
int i;
sqlite3_stmt *pUp = 0;
int bPatchset = (pbRetry==0 || pIter->bPatchset);
rc = sessionUpdateFind(pIter, p, bPatchset, &pUp);
/* Bind values to the UPDATE statement. */
for(i=0; rc==SQLITE_OK && i<nCol; i++){
sqlite3_value *pOld = sessionChangesetOld(pIter, i);
sqlite3_value *pNew = sessionChangesetNew(pIter, i);
if( p->abPK[i] || (bPatchset==0 && pOld) ){
rc = sessionBindValue(pUp, i*2+2, pOld);
}
if( rc==SQLITE_OK && pNew ){
rc = sessionBindValue(pUp, i*2+1, pNew);
}
}
if( rc!=SQLITE_OK ) return rc;
/* Attempt the UPDATE. In the case of a NOTFOUND or DATA conflict,
** the result will be SQLITE_OK with 0 rows modified. */
sqlite3_step(pUp);
rc = sqlite3_reset(pUp);
if( rc==SQLITE_OK && sqlite3_changes(p->db)==0 ){
/* A NOTFOUND or DATA error. Search the table to see if it contains
** a row with a matching primary key. If so, this is a DATA conflict.
** Otherwise, if there is no primary key match, it is a NOTFOUND. */
rc = sessionConflictHandler(
SQLITE_CHANGESET_DATA, p, pIter, xConflict, pCtx, pbRetry
);
}else if( (rc&0xff)==SQLITE_CONSTRAINT ){
/* This is always a CONSTRAINT conflict. */
rc = sessionConflictHandler(
SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, 0
);
}
}else{
assert( op==SQLITE_INSERT );
if( p->bStat1 ){
/* Check if there is a conflicting row. For sqlite_stat1, this needs
** to be done using a SELECT, as there is no PRIMARY KEY in the
** database schema to throw an exception if a duplicate is inserted. */
rc = sessionSeekToRow(pIter, p);
if( rc==SQLITE_ROW ){
rc = SQLITE_CONSTRAINT;
sqlite3_reset(p->pSelect);
}
}
if( rc==SQLITE_OK ){
rc = sessionBindRow(pIter, sqlite3changeset_new, nCol, 0, p->pInsert);
if( rc!=SQLITE_OK ) return rc;
sqlite3_step(p->pInsert);
rc = sqlite3_reset(p->pInsert);
}
if( (rc&0xff)==SQLITE_CONSTRAINT ){
rc = sessionConflictHandler(
SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, pbReplace
);
}
}
return rc;
}
/*
** Attempt to apply the change that the iterator passed as the first argument
** currently points to to the database. If a conflict is encountered, invoke
** the conflict handler callback.
**
** The difference between this function and sessionApplyOne() is that this
** function handles the case where the conflict-handler is invoked and
** returns SQLITE_CHANGESET_REPLACE - indicating that the change should be
** retried in some manner.
*/
static int sessionApplyOneWithRetry(
sqlite3 *db, /* Apply change to "main" db of this handle */
sqlite3_changeset_iter *pIter, /* Changeset iterator to read change from */
SessionApplyCtx *pApply, /* Apply context */
int(*xConflict)(void*, int, sqlite3_changeset_iter*),
void *pCtx /* First argument passed to xConflict */
){
int bReplace = 0;
int bRetry = 0;
int rc;
rc = sessionApplyOneOp(pIter, pApply, xConflict, pCtx, &bReplace, &bRetry);
if( rc==SQLITE_OK ){
/* If the bRetry flag is set, the change has not been applied due to an
** SQLITE_CHANGESET_DATA problem (i.e. this is an UPDATE or DELETE and
** a row with the correct PK is present in the db, but one or more other
** fields do not contain the expected values) and the conflict handler
** returned SQLITE_CHANGESET_REPLACE. In this case retry the operation,
** but pass NULL as the final argument so that sessionApplyOneOp() ignores
** the SQLITE_CHANGESET_DATA problem. */
if( bRetry ){
assert( pIter->op==SQLITE_UPDATE || pIter->op==SQLITE_DELETE );
rc = sessionApplyOneOp(pIter, pApply, xConflict, pCtx, 0, 0);
}
/* If the bReplace flag is set, the change is an INSERT that has not
** been performed because the database already contains a row with the
** specified primary key and the conflict handler returned
** SQLITE_CHANGESET_REPLACE. In this case remove the conflicting row
** before reattempting the INSERT. */
else if( bReplace ){
assert( pIter->op==SQLITE_INSERT );
rc = sqlite3_exec(db, "SAVEPOINT replace_op", 0, 0, 0);
if( rc==SQLITE_OK ){
rc = sessionBindRow(pIter,
sqlite3changeset_new, pApply->nCol, pApply->abPK, pApply->pDelete);
sqlite3_bind_int(pApply->pDelete, pApply->nCol+1, 1);
}
if( rc==SQLITE_OK ){
sqlite3_step(pApply->pDelete);
rc = sqlite3_reset(pApply->pDelete);
}
if( rc==SQLITE_OK ){
rc = sessionApplyOneOp(pIter, pApply, xConflict, pCtx, 0, 0);
}
if( rc==SQLITE_OK ){
rc = sqlite3_exec(db, "RELEASE replace_op", 0, 0, 0);
}
}
}
return rc;
}
/*
** Retry the changes accumulated in the pApply->constraints buffer.
*/
static int sessionRetryConstraints(
sqlite3 *db,
int bPatchset,
const char *zTab,
SessionApplyCtx *pApply,
int(*xConflict)(void*, int, sqlite3_changeset_iter*),
void *pCtx /* First argument passed to xConflict */
){
int rc = SQLITE_OK;
while( pApply->constraints.nBuf ){
sqlite3_changeset_iter *pIter2 = 0;
SessionBuffer cons = pApply->constraints;
memset(&pApply->constraints, 0, sizeof(SessionBuffer));
rc = sessionChangesetStart(
&pIter2, 0, 0, cons.nBuf, cons.aBuf, pApply->bInvertConstraints, 1
);
if( rc==SQLITE_OK ){
size_t nByte = 2*pApply->nCol*sizeof(sqlite3_value*);
int rc2;
pIter2->bPatchset = bPatchset;
pIter2->zTab = (char*)zTab;
pIter2->nCol = pApply->nCol;
pIter2->abPK = pApply->abPK;
sessionBufferGrow(&pIter2->tblhdr, nByte, &rc);
pIter2->apValue = (sqlite3_value**)pIter2->tblhdr.aBuf;
if( rc==SQLITE_OK ) memset(pIter2->apValue, 0, nByte);
while( rc==SQLITE_OK && SQLITE_ROW==sqlite3changeset_next(pIter2) ){
rc = sessionApplyOneWithRetry(db, pIter2, pApply, xConflict, pCtx);
}
rc2 = sqlite3changeset_finalize(pIter2);
if( rc==SQLITE_OK ) rc = rc2;
}
assert( pApply->bDeferConstraints || pApply->constraints.nBuf==0 );
sqlite3_free(cons.aBuf);
if( rc!=SQLITE_OK ) break;
if( pApply->constraints.nBuf>=cons.nBuf ){
/* No progress was made on the last round. */
pApply->bDeferConstraints = 0;
}
}
return rc;
}
/*
** Argument pIter is a changeset iterator that has been initialized, but
** not yet passed to sqlite3changeset_next(). This function applies the
** changeset to the main database attached to handle "db". The supplied
** conflict handler callback is invoked to resolve any conflicts encountered
** while applying the change.
*/
static int sessionChangesetApply(
sqlite3 *db, /* Apply change to "main" db of this handle */
sqlite3_changeset_iter *pIter, /* Changeset to apply */
int(*xFilter)(
void *pCtx, /* Copy of sixth arg to _apply() */
const char *zTab /* Table name */
),
int(*xConflict)(
void *pCtx, /* Copy of fifth arg to _apply() */
int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
sqlite3_changeset_iter *p /* Handle describing change and conflict */
),
void *pCtx, /* First argument passed to xConflict */
void **ppRebase, int *pnRebase, /* OUT: Rebase information */
int flags /* SESSION_APPLY_XXX flags */
){
int schemaMismatch = 0;
int rc = SQLITE_OK; /* Return code */
const char *zTab = 0; /* Name of current table */
int nTab = 0; /* Result of sqlite3Strlen30(zTab) */
SessionApplyCtx sApply; /* changeset_apply() context object */
int bPatchset;
assert( xConflict!=0 );
pIter->in.bNoDiscard = 1;
memset(&sApply, 0, sizeof(sApply));
sApply.bRebase = (ppRebase && pnRebase);
sApply.bInvertConstraints = !!(flags & SQLITE_CHANGESETAPPLY_INVERT);
sApply.bIgnoreNoop = !!(flags & SQLITE_CHANGESETAPPLY_IGNORENOOP);
sqlite3_mutex_enter(sqlite3_db_mutex(db));
if( (flags & SQLITE_CHANGESETAPPLY_NOSAVEPOINT)==0 ){
rc = sqlite3_exec(db, "SAVEPOINT changeset_apply", 0, 0, 0);
}
if( rc==SQLITE_OK ){
rc = sqlite3_exec(db, "PRAGMA defer_foreign_keys = 1", 0, 0, 0);
}
while( rc==SQLITE_OK && SQLITE_ROW==sqlite3changeset_next(pIter) ){
int nCol;
int op;
const char *zNew;
sqlite3changeset_op(pIter, &zNew, &nCol, &op, 0);
if( zTab==0 || sqlite3_strnicmp(zNew, zTab, nTab+1) ){
u8 *abPK;
rc = sessionRetryConstraints(
db, pIter->bPatchset, zTab, &sApply, xConflict, pCtx
);
if( rc!=SQLITE_OK ) break;
sessionUpdateFree(&sApply);
sqlite3_free((char*)sApply.azCol); /* cast works around VC++ bug */
sqlite3_finalize(sApply.pDelete);
sqlite3_finalize(sApply.pInsert);
sqlite3_finalize(sApply.pSelect);
sApply.db = db;
sApply.pDelete = 0;
sApply.pInsert = 0;
sApply.pSelect = 0;
sApply.nCol = 0;
sApply.azCol = 0;
sApply.abPK = 0;
sApply.bStat1 = 0;
sApply.bDeferConstraints = 1;
sApply.bRebaseStarted = 0;
sApply.bRowid = 0;
memset(&sApply.constraints, 0, sizeof(SessionBuffer));
/* If an xFilter() callback was specified, invoke it now. If the
** xFilter callback returns zero, skip this table. If it returns
** non-zero, proceed. */
schemaMismatch = (xFilter && (0==xFilter(pCtx, zNew)));
if( schemaMismatch ){
zTab = sqlite3_mprintf("%s", zNew);
if( zTab==0 ){
rc = SQLITE_NOMEM;
break;
}
nTab = (int)strlen(zTab);
sApply.azCol = (const char **)zTab;
}else{
int nMinCol = 0;
int i;
sqlite3changeset_pk(pIter, &abPK, 0);
rc = sessionTableInfo(0, db, "main", zNew,
&sApply.nCol, &zTab, &sApply.azCol, &sApply.abPK, &sApply.bRowid
);
if( rc!=SQLITE_OK ) break;
for(i=0; i<sApply.nCol; i++){
if( sApply.abPK[i] ) nMinCol = i+1;
}
if( sApply.nCol==0 ){
schemaMismatch = 1;
sqlite3_log(SQLITE_SCHEMA,
"sqlite3changeset_apply(): no such table: %s", zTab
);
}
else if( sApply.nCol<nCol ){
schemaMismatch = 1;
sqlite3_log(SQLITE_SCHEMA,
"sqlite3changeset_apply(): table %s has %d columns, "
"expected %d or more",
zTab, sApply.nCol, nCol
);
}
else if( nCol<nMinCol || memcmp(sApply.abPK, abPK, nCol)!=0 ){
schemaMismatch = 1;
sqlite3_log(SQLITE_SCHEMA, "sqlite3changeset_apply(): "
"primary key mismatch for table %s", zTab
);
}
else{
sApply.nCol = nCol;
if( 0==sqlite3_stricmp(zTab, "sqlite_stat1") ){
if( (rc = sessionStat1Sql(db, &sApply) ) ){
break;
}
sApply.bStat1 = 1;
}else{
if( (rc = sessionSelectRow(db, zTab, &sApply))
|| (rc = sessionDeleteRow(db, zTab, &sApply))
|| (rc = sessionInsertRow(db, zTab, &sApply))
){
break;
}
sApply.bStat1 = 0;
}
}
nTab = sqlite3Strlen30(zTab);
}
}
/* If there is a schema mismatch on the current table, proceed to the
** next change. A log message has already been issued. */
if( schemaMismatch ) continue;
rc = sessionApplyOneWithRetry(db, pIter, &sApply, xConflict, pCtx);
}
bPatchset = pIter->bPatchset;
if( rc==SQLITE_OK ){
rc = sqlite3changeset_finalize(pIter);
}else{
sqlite3changeset_finalize(pIter);
}
if( rc==SQLITE_OK ){
rc = sessionRetryConstraints(db, bPatchset, zTab, &sApply, xConflict, pCtx);
}
if( rc==SQLITE_OK ){
int nFk, notUsed;
sqlite3_db_status(db, SQLITE_DBSTATUS_DEFERRED_FKS, &nFk, &notUsed, 0);
if( nFk!=0 ){
int res = SQLITE_CHANGESET_ABORT;
sqlite3_changeset_iter sIter;
memset(&sIter, 0, sizeof(sIter));
sIter.nCol = nFk;
res = xConflict(pCtx, SQLITE_CHANGESET_FOREIGN_KEY, &sIter);
if( res!=SQLITE_CHANGESET_OMIT ){
rc = SQLITE_CONSTRAINT;
}
}
}
sqlite3_exec(db, "PRAGMA defer_foreign_keys = 0", 0, 0, 0);
if( (flags & SQLITE_CHANGESETAPPLY_NOSAVEPOINT)==0 ){
if( rc==SQLITE_OK ){
rc = sqlite3_exec(db, "RELEASE changeset_apply", 0, 0, 0);
}else{
sqlite3_exec(db, "ROLLBACK TO changeset_apply", 0, 0, 0);
sqlite3_exec(db, "RELEASE changeset_apply", 0, 0, 0);
}
}
assert( sApply.bRebase || sApply.rebase.nBuf==0 );
if( rc==SQLITE_OK && bPatchset==0 && sApply.bRebase ){
*ppRebase = (void*)sApply.rebase.aBuf;
*pnRebase = sApply.rebase.nBuf;
sApply.rebase.aBuf = 0;
}
sessionUpdateFree(&sApply);
sqlite3_finalize(sApply.pInsert);
sqlite3_finalize(sApply.pDelete);
sqlite3_finalize(sApply.pSelect);
sqlite3_free((char*)sApply.azCol); /* cast works around VC++ bug */
sqlite3_free((char*)sApply.constraints.aBuf);
sqlite3_free((char*)sApply.rebase.aBuf);
sqlite3_mutex_leave(sqlite3_db_mutex(db));
return rc;
}
/*
** Apply the changeset passed via pChangeset/nChangeset to the main
** database attached to handle "db".
*/
int sqlite3changeset_apply_v2(
sqlite3 *db, /* Apply change to "main" db of this handle */
int nChangeset, /* Size of changeset in bytes */
void *pChangeset, /* Changeset blob */
int(*xFilter)(
void *pCtx, /* Copy of sixth arg to _apply() */
const char *zTab /* Table name */
),
int(*xConflict)(
void *pCtx, /* Copy of sixth arg to _apply() */
int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
sqlite3_changeset_iter *p /* Handle describing change and conflict */
),
void *pCtx, /* First argument passed to xConflict */
void **ppRebase, int *pnRebase,
int flags
){
sqlite3_changeset_iter *pIter; /* Iterator to skip through changeset */
int bInv = !!(flags & SQLITE_CHANGESETAPPLY_INVERT);
int rc = sessionChangesetStart(&pIter, 0, 0, nChangeset, pChangeset, bInv, 1);
if( rc==SQLITE_OK ){
rc = sessionChangesetApply(
db, pIter, xFilter, xConflict, pCtx, ppRebase, pnRebase, flags
);
}
return rc;
}
/*
** Apply the changeset passed via pChangeset/nChangeset to the main database
** attached to handle "db". Invoke the supplied conflict handler callback
** to resolve any conflicts encountered while applying the change.
*/
int sqlite3changeset_apply(
sqlite3 *db, /* Apply change to "main" db of this handle */
int nChangeset, /* Size of changeset in bytes */
void *pChangeset, /* Changeset blob */
int(*xFilter)(
void *pCtx, /* Copy of sixth arg to _apply() */
const char *zTab /* Table name */
),
int(*xConflict)(
void *pCtx, /* Copy of fifth arg to _apply() */
int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
sqlite3_changeset_iter *p /* Handle describing change and conflict */
),
void *pCtx /* First argument passed to xConflict */
){
return sqlite3changeset_apply_v2(
db, nChangeset, pChangeset, xFilter, xConflict, pCtx, 0, 0, 0
);
}
/*
** Apply the changeset passed via xInput/pIn to the main database
** attached to handle "db". Invoke the supplied conflict handler callback
** to resolve any conflicts encountered while applying the change.
*/
int sqlite3changeset_apply_v2_strm(
sqlite3 *db, /* Apply change to "main" db of this handle */
int (*xInput)(void *pIn, void *pData, int *pnData), /* Input function */
void *pIn, /* First arg for xInput */
int(*xFilter)(
void *pCtx, /* Copy of sixth arg to _apply() */
const char *zTab /* Table name */
),
int(*xConflict)(
void *pCtx, /* Copy of sixth arg to _apply() */
int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
sqlite3_changeset_iter *p /* Handle describing change and conflict */
),
void *pCtx, /* First argument passed to xConflict */
void **ppRebase, int *pnRebase,
int flags
){
sqlite3_changeset_iter *pIter; /* Iterator to skip through changeset */
int bInverse = !!(flags & SQLITE_CHANGESETAPPLY_INVERT);
int rc = sessionChangesetStart(&pIter, xInput, pIn, 0, 0, bInverse, 1);
if( rc==SQLITE_OK ){
rc = sessionChangesetApply(
db, pIter, xFilter, xConflict, pCtx, ppRebase, pnRebase, flags
);
}
return rc;
}
int sqlite3changeset_apply_strm(
sqlite3 *db, /* Apply change to "main" db of this handle */
int (*xInput)(void *pIn, void *pData, int *pnData), /* Input function */
void *pIn, /* First arg for xInput */
int(*xFilter)(
void *pCtx, /* Copy of sixth arg to _apply() */
const char *zTab /* Table name */
),
int(*xConflict)(
void *pCtx, /* Copy of sixth arg to _apply() */
int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
sqlite3_changeset_iter *p /* Handle describing change and conflict */
),
void *pCtx /* First argument passed to xConflict */
){
return sqlite3changeset_apply_v2_strm(
db, xInput, pIn, xFilter, xConflict, pCtx, 0, 0, 0
);
}
/*
** sqlite3_changegroup handle.
*/
struct sqlite3_changegroup {
int rc; /* Error code */
int bPatch; /* True to accumulate patchsets */
SessionTable *pList; /* List of tables in current patch */
};
/*
** This function is called to merge two changes to the same row together as
** part of an sqlite3changeset_concat() operation. A new change object is
** allocated and a pointer to it stored in *ppNew.
*/
static int sessionChangeMerge(
SessionTable *pTab, /* Table structure */
int bRebase, /* True for a rebase hash-table */
int bPatchset, /* True for patchsets */
SessionChange *pExist, /* Existing change */
int op2, /* Second change operation */
int bIndirect, /* True if second change is indirect */
u8 *aRec, /* Second change record */
int nRec, /* Number of bytes in aRec */
SessionChange **ppNew /* OUT: Merged change */
){
SessionChange *pNew = 0;
int rc = SQLITE_OK;
if( !pExist ){
pNew = (SessionChange *)sqlite3_malloc64(sizeof(SessionChange) + nRec);
if( !pNew ){
return SQLITE_NOMEM;
}
memset(pNew, 0, sizeof(SessionChange));
pNew->op = op2;
pNew->bIndirect = bIndirect;
pNew->aRecord = (u8*)&pNew[1];
if( bIndirect==0 || bRebase==0 ){
pNew->nRecord = nRec;
memcpy(pNew->aRecord, aRec, nRec);
}else{
int i;
u8 *pIn = aRec;
u8 *pOut = pNew->aRecord;
for(i=0; i<pTab->nCol; i++){
int nIn = sessionSerialLen(pIn);
if( *pIn==0 ){
*pOut++ = 0;
}else if( pTab->abPK[i]==0 ){
*pOut++ = 0xFF;
}else{
memcpy(pOut, pIn, nIn);
pOut += nIn;
}
pIn += nIn;
}
pNew->nRecord = pOut - pNew->aRecord;
}
}else if( bRebase ){
if( pExist->op==SQLITE_DELETE && pExist->bIndirect ){
*ppNew = pExist;
}else{
sqlite3_int64 nByte = nRec + pExist->nRecord + sizeof(SessionChange);
pNew = (SessionChange*)sqlite3_malloc64(nByte);
if( pNew==0 ){
rc = SQLITE_NOMEM;
}else{
int i;
u8 *a1 = pExist->aRecord;
u8 *a2 = aRec;
u8 *pOut;
memset(pNew, 0, nByte);
pNew->bIndirect = bIndirect || pExist->bIndirect;
pNew->op = op2;
pOut = pNew->aRecord = (u8*)&pNew[1];
for(i=0; i<pTab->nCol; i++){
int n1 = sessionSerialLen(a1);
int n2 = sessionSerialLen(a2);
if( *a1==0xFF || (pTab->abPK[i]==0 && bIndirect) ){
*pOut++ = 0xFF;
}else if( *a2==0 ){
memcpy(pOut, a1, n1);
pOut += n1;
}else{
memcpy(pOut, a2, n2);
pOut += n2;
}
a1 += n1;
a2 += n2;
}
pNew->nRecord = pOut - pNew->aRecord;
}
sqlite3_free(pExist);
}
}else{
int op1 = pExist->op;
/*
** op1=INSERT, op2=INSERT -> Unsupported. Discard op2.
** op1=INSERT, op2=UPDATE -> INSERT.
** op1=INSERT, op2=DELETE -> (none)
**
** op1=UPDATE, op2=INSERT -> Unsupported. Discard op2.
** op1=UPDATE, op2=UPDATE -> UPDATE.
** op1=UPDATE, op2=DELETE -> DELETE.
**
** op1=DELETE, op2=INSERT -> UPDATE.
** op1=DELETE, op2=UPDATE -> Unsupported. Discard op2.
** op1=DELETE, op2=DELETE -> Unsupported. Discard op2.
*/
if( (op1==SQLITE_INSERT && op2==SQLITE_INSERT)
|| (op1==SQLITE_UPDATE && op2==SQLITE_INSERT)
|| (op1==SQLITE_DELETE && op2==SQLITE_UPDATE)
|| (op1==SQLITE_DELETE && op2==SQLITE_DELETE)
){
pNew = pExist;
}else if( op1==SQLITE_INSERT && op2==SQLITE_DELETE ){
sqlite3_free(pExist);
assert( pNew==0 );
}else{
u8 *aExist = pExist->aRecord;
sqlite3_int64 nByte;
u8 *aCsr;
/* Allocate a new SessionChange object. Ensure that the aRecord[]
** buffer of the new object is large enough to hold any record that
** may be generated by combining the input records. */
nByte = sizeof(SessionChange) + pExist->nRecord + nRec;
pNew = (SessionChange *)sqlite3_malloc64(nByte);
if( !pNew ){
sqlite3_free(pExist);
return SQLITE_NOMEM;
}
memset(pNew, 0, sizeof(SessionChange));
pNew->bIndirect = (bIndirect && pExist->bIndirect);
aCsr = pNew->aRecord = (u8 *)&pNew[1];
if( op1==SQLITE_INSERT ){ /* INSERT + UPDATE */
u8 *a1 = aRec;
assert( op2==SQLITE_UPDATE );
pNew->op = SQLITE_INSERT;
if( bPatchset==0 ) sessionSkipRecord(&a1, pTab->nCol);
sessionMergeRecord(&aCsr, pTab->nCol, aExist, a1);
}else if( op1==SQLITE_DELETE ){ /* DELETE + INSERT */
assert( op2==SQLITE_INSERT );
pNew->op = SQLITE_UPDATE;
if( bPatchset ){
memcpy(aCsr, aRec, nRec);
aCsr += nRec;
}else{
if( 0==sessionMergeUpdate(&aCsr, pTab, bPatchset, aExist, 0,aRec,0) ){
sqlite3_free(pNew);
pNew = 0;
}
}
}else if( op2==SQLITE_UPDATE ){ /* UPDATE + UPDATE */
u8 *a1 = aExist;
u8 *a2 = aRec;
assert( op1==SQLITE_UPDATE );
if( bPatchset==0 ){
sessionSkipRecord(&a1, pTab->nCol);
sessionSkipRecord(&a2, pTab->nCol);
}
pNew->op = SQLITE_UPDATE;
if( 0==sessionMergeUpdate(&aCsr, pTab, bPatchset, aRec, aExist,a1,a2) ){
sqlite3_free(pNew);
pNew = 0;
}
}else{ /* UPDATE + DELETE */
assert( op1==SQLITE_UPDATE && op2==SQLITE_DELETE );
pNew->op = SQLITE_DELETE;
if( bPatchset ){
memcpy(aCsr, aRec, nRec);
aCsr += nRec;
}else{
sessionMergeRecord(&aCsr, pTab->nCol, aRec, aExist);
}
}
if( pNew ){
pNew->nRecord = (int)(aCsr - pNew->aRecord);
}
sqlite3_free(pExist);
}
}
*ppNew = pNew;
return rc;
}
/*
** Add all changes in the changeset traversed by the iterator passed as
** the first argument to the changegroup hash tables.
*/
static int sessionChangesetToHash(
sqlite3_changeset_iter *pIter, /* Iterator to read from */
sqlite3_changegroup *pGrp, /* Changegroup object to add changeset to */
int bRebase /* True if hash table is for rebasing */
){
u8 *aRec;
int nRec;
int rc = SQLITE_OK;
SessionTable *pTab = 0;
while( SQLITE_ROW==sessionChangesetNext(pIter, &aRec, &nRec, 0) ){
const char *zNew;
int nCol;
int op;
int iHash;
int bIndirect;
SessionChange *pChange;
SessionChange *pExist = 0;
SessionChange **pp;
if( pGrp->pList==0 ){
pGrp->bPatch = pIter->bPatchset;
}else if( pIter->bPatchset!=pGrp->bPatch ){
rc = SQLITE_ERROR;
break;
}
sqlite3changeset_op(pIter, &zNew, &nCol, &op, &bIndirect);
if( !pTab || sqlite3_stricmp(zNew, pTab->zName) ){
/* Search the list for a matching table */
int nNew = (int)strlen(zNew);
u8 *abPK;
sqlite3changeset_pk(pIter, &abPK, 0);
for(pTab = pGrp->pList; pTab; pTab=pTab->pNext){
if( 0==sqlite3_strnicmp(pTab->zName, zNew, nNew+1) ) break;
}
if( !pTab ){
SessionTable **ppTab;
pTab = sqlite3_malloc64(sizeof(SessionTable) + nCol + nNew+1);
if( !pTab ){
rc = SQLITE_NOMEM;
break;
}
memset(pTab, 0, sizeof(SessionTable));
pTab->nCol = nCol;
pTab->abPK = (u8*)&pTab[1];
memcpy(pTab->abPK, abPK, nCol);
pTab->zName = (char*)&pTab->abPK[nCol];
memcpy(pTab->zName, zNew, nNew+1);
/* The new object must be linked on to the end of the list, not
** simply added to the start of it. This is to ensure that the
** tables within the output of sqlite3changegroup_output() are in
** the right order. */
for(ppTab=&pGrp->pList; *ppTab; ppTab=&(*ppTab)->pNext);
*ppTab = pTab;
}else if( pTab->nCol!=nCol || memcmp(pTab->abPK, abPK, nCol) ){
rc = SQLITE_SCHEMA;
break;
}
}
if( sessionGrowHash(0, pIter->bPatchset, pTab) ){
rc = SQLITE_NOMEM;
break;
}
iHash = sessionChangeHash(
pTab, (pIter->bPatchset && op==SQLITE_DELETE), aRec, pTab->nChange
);
/* Search for existing entry. If found, remove it from the hash table.
** Code below may link it back in.
*/
for(pp=&pTab->apChange[iHash]; *pp; pp=&(*pp)->pNext){
int bPkOnly1 = 0;
int bPkOnly2 = 0;
if( pIter->bPatchset ){
bPkOnly1 = (*pp)->op==SQLITE_DELETE;
bPkOnly2 = op==SQLITE_DELETE;
}
if( sessionChangeEqual(pTab, bPkOnly1, (*pp)->aRecord, bPkOnly2, aRec) ){
pExist = *pp;
*pp = (*pp)->pNext;
pTab->nEntry--;
break;
}
}
rc = sessionChangeMerge(pTab, bRebase,
pIter->bPatchset, pExist, op, bIndirect, aRec, nRec, &pChange
);
if( rc ) break;
if( pChange ){
pChange->pNext = pTab->apChange[iHash];
pTab->apChange[iHash] = pChange;
pTab->nEntry++;
}
}
if( rc==SQLITE_OK ) rc = pIter->rc;
return rc;
}
/*
** Serialize a changeset (or patchset) based on all changesets (or patchsets)
** added to the changegroup object passed as the first argument.
**
** If xOutput is not NULL, then the changeset/patchset is returned to the
** user via one or more calls to xOutput, as with the other streaming
** interfaces.
**
** Or, if xOutput is NULL, then (*ppOut) is populated with a pointer to a
** buffer containing the output changeset before this function returns. In
** this case (*pnOut) is set to the size of the output buffer in bytes. It
** is the responsibility of the caller to free the output buffer using
** sqlite3_free() when it is no longer required.
**
** If successful, SQLITE_OK is returned. Or, if an error occurs, an SQLite
** error code. If an error occurs and xOutput is NULL, (*ppOut) and (*pnOut)
** are both set to 0 before returning.
*/
static int sessionChangegroupOutput(
sqlite3_changegroup *pGrp,
int (*xOutput)(void *pOut, const void *pData, int nData),
void *pOut,
int *pnOut,
void **ppOut
){
int rc = SQLITE_OK;
SessionBuffer buf = {0, 0, 0};
SessionTable *pTab;
assert( xOutput==0 || (ppOut==0 && pnOut==0) );
/* Create the serialized output changeset based on the contents of the
** hash tables attached to the SessionTable objects in list p->pList.
*/
for(pTab=pGrp->pList; rc==SQLITE_OK && pTab; pTab=pTab->pNext){
int i;
if( pTab->nEntry==0 ) continue;
sessionAppendTableHdr(&buf, pGrp->bPatch, pTab, &rc);
for(i=0; i<pTab->nChange; i++){
SessionChange *p;
for(p=pTab->apChange[i]; p; p=p->pNext){
sessionAppendByte(&buf, p->op, &rc);
sessionAppendByte(&buf, p->bIndirect, &rc);
sessionAppendBlob(&buf, p->aRecord, p->nRecord, &rc);
if( rc==SQLITE_OK && xOutput && buf.nBuf>=sessions_strm_chunk_size ){
rc = xOutput(pOut, buf.aBuf, buf.nBuf);
buf.nBuf = 0;
}
}
}
}
if( rc==SQLITE_OK ){
if( xOutput ){
if( buf.nBuf>0 ) rc = xOutput(pOut, buf.aBuf, buf.nBuf);
}else if( ppOut ){
*ppOut = buf.aBuf;
if( pnOut ) *pnOut = buf.nBuf;
buf.aBuf = 0;
}
}
sqlite3_free(buf.aBuf);
return rc;
}
/*
** Allocate a new, empty, sqlite3_changegroup.
*/
int sqlite3changegroup_new(sqlite3_changegroup **pp){
int rc = SQLITE_OK; /* Return code */
sqlite3_changegroup *p; /* New object */
p = (sqlite3_changegroup*)sqlite3_malloc(sizeof(sqlite3_changegroup));
if( p==0 ){
rc = SQLITE_NOMEM;
}else{
memset(p, 0, sizeof(sqlite3_changegroup));
}
*pp = p;
return rc;
}
/*
** Add the changeset currently stored in buffer pData, size nData bytes,
** to changeset-group p.
*/
int sqlite3changegroup_add(sqlite3_changegroup *pGrp, int nData, void *pData){
sqlite3_changeset_iter *pIter; /* Iterator opened on pData/nData */
int rc; /* Return code */
rc = sqlite3changeset_start(&pIter, nData, pData);
if( rc==SQLITE_OK ){
rc = sessionChangesetToHash(pIter, pGrp, 0);
}
sqlite3changeset_finalize(pIter);
return rc;
}
/*
** Obtain a buffer containing a changeset representing the concatenation
** of all changesets added to the group so far.
*/
int sqlite3changegroup_output(
sqlite3_changegroup *pGrp,
int *pnData,
void **ppData
){
return sessionChangegroupOutput(pGrp, 0, 0, pnData, ppData);
}
/*
** Streaming versions of changegroup_add().
*/
int sqlite3changegroup_add_strm(
sqlite3_changegroup *pGrp,
int (*xInput)(void *pIn, void *pData, int *pnData),
void *pIn
){
sqlite3_changeset_iter *pIter; /* Iterator opened on pData/nData */
int rc; /* Return code */
rc = sqlite3changeset_start_strm(&pIter, xInput, pIn);
if( rc==SQLITE_OK ){
rc = sessionChangesetToHash(pIter, pGrp, 0);
}
sqlite3changeset_finalize(pIter);
return rc;
}
/*
** Streaming versions of changegroup_output().
*/
int sqlite3changegroup_output_strm(
sqlite3_changegroup *pGrp,
int (*xOutput)(void *pOut, const void *pData, int nData),
void *pOut
){
return sessionChangegroupOutput(pGrp, xOutput, pOut, 0, 0);
}
/*
** Delete a changegroup object.
*/
void sqlite3changegroup_delete(sqlite3_changegroup *pGrp){
if( pGrp ){
sessionDeleteTable(0, pGrp->pList);
sqlite3_free(pGrp);
}
}
/*
** Combine two changesets together.
*/
int sqlite3changeset_concat(
int nLeft, /* Number of bytes in lhs input */
void *pLeft, /* Lhs input changeset */
int nRight /* Number of bytes in rhs input */,
void *pRight, /* Rhs input changeset */
int *pnOut, /* OUT: Number of bytes in output changeset */
void **ppOut /* OUT: changeset (left <concat> right) */
){
sqlite3_changegroup *pGrp;
int rc;
rc = sqlite3changegroup_new(&pGrp);
if( rc==SQLITE_OK ){
rc = sqlite3changegroup_add(pGrp, nLeft, pLeft);
}
if( rc==SQLITE_OK ){
rc = sqlite3changegroup_add(pGrp, nRight, pRight);
}
if( rc==SQLITE_OK ){
rc = sqlite3changegroup_output(pGrp, pnOut, ppOut);
}
sqlite3changegroup_delete(pGrp);
return rc;
}
/*
** Streaming version of sqlite3changeset_concat().
*/
int sqlite3changeset_concat_strm(
int (*xInputA)(void *pIn, void *pData, int *pnData),
void *pInA,
int (*xInputB)(void *pIn, void *pData, int *pnData),
void *pInB,
int (*xOutput)(void *pOut, const void *pData, int nData),
void *pOut
){
sqlite3_changegroup *pGrp;
int rc;
rc = sqlite3changegroup_new(&pGrp);
if( rc==SQLITE_OK ){
rc = sqlite3changegroup_add_strm(pGrp, xInputA, pInA);
}
if( rc==SQLITE_OK ){
rc = sqlite3changegroup_add_strm(pGrp, xInputB, pInB);
}
if( rc==SQLITE_OK ){
rc = sqlite3changegroup_output_strm(pGrp, xOutput, pOut);
}
sqlite3changegroup_delete(pGrp);
return rc;
}
/*
** Changeset rebaser handle.
*/
struct sqlite3_rebaser {
sqlite3_changegroup grp; /* Hash table */
};
/*
** Buffers a1 and a2 must both contain a sessions module record nCol
** fields in size. This function appends an nCol sessions module
** record to buffer pBuf that is a copy of a1, except that for
** each field that is undefined in a1[], swap in the field from a2[].
*/
static void sessionAppendRecordMerge(
SessionBuffer *pBuf, /* Buffer to append to */
int nCol, /* Number of columns in each record */
u8 *a1, int n1, /* Record 1 */
u8 *a2, int n2, /* Record 2 */
int *pRc /* IN/OUT: error code */
){
sessionBufferGrow(pBuf, n1+n2, pRc);
if( *pRc==SQLITE_OK ){
int i;
u8 *pOut = &pBuf->aBuf[pBuf->nBuf];
for(i=0; i<nCol; i++){
int nn1 = sessionSerialLen(a1);
int nn2 = sessionSerialLen(a2);
if( *a1==0 || *a1==0xFF ){
memcpy(pOut, a2, nn2);
pOut += nn2;
}else{
memcpy(pOut, a1, nn1);
pOut += nn1;
}
a1 += nn1;
a2 += nn2;
}
pBuf->nBuf = pOut-pBuf->aBuf;
assert( pBuf->nBuf<=pBuf->nAlloc );
}
}
/*
** This function is called when rebasing a local UPDATE change against one
** or more remote UPDATE changes. The aRec/nRec buffer contains the current
** old.* and new.* records for the change. The rebase buffer (a single
** record) is in aChange/nChange. The rebased change is appended to buffer
** pBuf.
**
** Rebasing the UPDATE involves:
**
** * Removing any changes to fields for which the corresponding field
** in the rebase buffer is set to "replaced" (type 0xFF). If this
** means the UPDATE change updates no fields, nothing is appended
** to the output buffer.
**
** * For each field modified by the local change for which the
** corresponding field in the rebase buffer is not "undefined" (0x00)
** or "replaced" (0xFF), the old.* value is replaced by the value
** in the rebase buffer.
*/
static void sessionAppendPartialUpdate(
SessionBuffer *pBuf, /* Append record here */
sqlite3_changeset_iter *pIter, /* Iterator pointed at local change */
u8 *aRec, int nRec, /* Local change */
u8 *aChange, int nChange, /* Record to rebase against */
int *pRc /* IN/OUT: Return Code */
){
sessionBufferGrow(pBuf, 2+nRec+nChange, pRc);
if( *pRc==SQLITE_OK ){
int bData = 0;
u8 *pOut = &pBuf->aBuf[pBuf->nBuf];
int i;
u8 *a1 = aRec;
u8 *a2 = aChange;
*pOut++ = SQLITE_UPDATE;
*pOut++ = pIter->bIndirect;
for(i=0; i<pIter->nCol; i++){
int n1 = sessionSerialLen(a1);
int n2 = sessionSerialLen(a2);
if( pIter->abPK[i] || a2[0]==0 ){
if( !pIter->abPK[i] && a1[0] ) bData = 1;
memcpy(pOut, a1, n1);
pOut += n1;
}else if( a2[0]!=0xFF && a1[0] ){
bData = 1;
memcpy(pOut, a2, n2);
pOut += n2;
}else{
*pOut++ = '\0';
}
a1 += n1;
a2 += n2;
}
if( bData ){
a2 = aChange;
for(i=0; i<pIter->nCol; i++){
int n1 = sessionSerialLen(a1);
int n2 = sessionSerialLen(a2);
if( pIter->abPK[i] || a2[0]!=0xFF ){
memcpy(pOut, a1, n1);
pOut += n1;
}else{
*pOut++ = '\0';
}
a1 += n1;
a2 += n2;
}
pBuf->nBuf = (pOut - pBuf->aBuf);
}
}
}
/*
** pIter is configured to iterate through a changeset. This function rebases
** that changeset according to the current configuration of the rebaser
** object passed as the first argument. If no error occurs and argument xOutput
** is not NULL, then the changeset is returned to the caller by invoking
** xOutput zero or more times and SQLITE_OK returned. Or, if xOutput is NULL,
** then (*ppOut) is set to point to a buffer containing the rebased changeset
** before this function returns. In this case (*pnOut) is set to the size of
** the buffer in bytes. It is the responsibility of the caller to eventually
** free the (*ppOut) buffer using sqlite3_free().
**
** If an error occurs, an SQLite error code is returned. If ppOut and
** pnOut are not NULL, then the two output parameters are set to 0 before
** returning.
*/
static int sessionRebase(
sqlite3_rebaser *p, /* Rebaser hash table */
sqlite3_changeset_iter *pIter, /* Input data */
int (*xOutput)(void *pOut, const void *pData, int nData),
void *pOut, /* Context for xOutput callback */
int *pnOut, /* OUT: Number of bytes in output changeset */
void **ppOut /* OUT: Inverse of pChangeset */
){
int rc = SQLITE_OK;
u8 *aRec = 0;
int nRec = 0;
int bNew = 0;
SessionTable *pTab = 0;
SessionBuffer sOut = {0,0,0};
while( SQLITE_ROW==sessionChangesetNext(pIter, &aRec, &nRec, &bNew) ){
SessionChange *pChange = 0;
int bDone = 0;
if( bNew ){
const char *zTab = pIter->zTab;
for(pTab=p->grp.pList; pTab; pTab=pTab->pNext){
if( 0==sqlite3_stricmp(pTab->zName, zTab) ) break;
}
bNew = 0;
/* A patchset may not be rebased */
if( pIter->bPatchset ){
rc = SQLITE_ERROR;
}
/* Append a table header to the output for this new table */
sessionAppendByte(&sOut, pIter->bPatchset ? 'P' : 'T', &rc);
sessionAppendVarint(&sOut, pIter->nCol, &rc);
sessionAppendBlob(&sOut, pIter->abPK, pIter->nCol, &rc);
sessionAppendBlob(&sOut,(u8*)pIter->zTab,(int)strlen(pIter->zTab)+1,&rc);
}
if( pTab && rc==SQLITE_OK ){
int iHash = sessionChangeHash(pTab, 0, aRec, pTab->nChange);
for(pChange=pTab->apChange[iHash]; pChange; pChange=pChange->pNext){
if( sessionChangeEqual(pTab, 0, aRec, 0, pChange->aRecord) ){
break;
}
}
}
if( pChange ){
assert( pChange->op==SQLITE_DELETE || pChange->op==SQLITE_INSERT );
switch( pIter->op ){
case SQLITE_INSERT:
if( pChange->op==SQLITE_INSERT ){
bDone = 1;
if( pChange->bIndirect==0 ){
sessionAppendByte(&sOut, SQLITE_UPDATE, &rc);
sessionAppendByte(&sOut, pIter->bIndirect, &rc);
sessionAppendBlob(&sOut, pChange->aRecord, pChange->nRecord, &rc);
sessionAppendBlob(&sOut, aRec, nRec, &rc);
}
}
break;
case SQLITE_UPDATE:
bDone = 1;
if( pChange->op==SQLITE_DELETE ){
if( pChange->bIndirect==0 ){
u8 *pCsr = aRec;
sessionSkipRecord(&pCsr, pIter->nCol);
sessionAppendByte(&sOut, SQLITE_INSERT, &rc);
sessionAppendByte(&sOut, pIter->bIndirect, &rc);
sessionAppendRecordMerge(&sOut, pIter->nCol,
pCsr, nRec-(pCsr-aRec),
pChange->aRecord, pChange->nRecord, &rc
);
}
}else{
sessionAppendPartialUpdate(&sOut, pIter,
aRec, nRec, pChange->aRecord, pChange->nRecord, &rc
);
}
break;
default:
assert( pIter->op==SQLITE_DELETE );
bDone = 1;
if( pChange->op==SQLITE_INSERT ){
sessionAppendByte(&sOut, SQLITE_DELETE, &rc);
sessionAppendByte(&sOut, pIter->bIndirect, &rc);
sessionAppendRecordMerge(&sOut, pIter->nCol,
pChange->aRecord, pChange->nRecord, aRec, nRec, &rc
);
}
break;
}
}
if( bDone==0 ){
sessionAppendByte(&sOut, pIter->op, &rc);
sessionAppendByte(&sOut, pIter->bIndirect, &rc);
sessionAppendBlob(&sOut, aRec, nRec, &rc);
}
if( rc==SQLITE_OK && xOutput && sOut.nBuf>sessions_strm_chunk_size ){
rc = xOutput(pOut, sOut.aBuf, sOut.nBuf);
sOut.nBuf = 0;
}
if( rc ) break;
}
if( rc!=SQLITE_OK ){
sqlite3_free(sOut.aBuf);
memset(&sOut, 0, sizeof(sOut));
}
if( rc==SQLITE_OK ){
if( xOutput ){
if( sOut.nBuf>0 ){
rc = xOutput(pOut, sOut.aBuf, sOut.nBuf);
}
}else if( ppOut ){
*ppOut = (void*)sOut.aBuf;
*pnOut = sOut.nBuf;
sOut.aBuf = 0;
}
}
sqlite3_free(sOut.aBuf);
return rc;
}
/*
** Create a new rebaser object.
*/
int sqlite3rebaser_create(sqlite3_rebaser **ppNew){
int rc = SQLITE_OK;
sqlite3_rebaser *pNew;
pNew = sqlite3_malloc(sizeof(sqlite3_rebaser));
if( pNew==0 ){
rc = SQLITE_NOMEM;
}else{
memset(pNew, 0, sizeof(sqlite3_rebaser));
}
*ppNew = pNew;
return rc;
}
/*
** Call this one or more times to configure a rebaser.
*/
int sqlite3rebaser_configure(
sqlite3_rebaser *p,
int nRebase, const void *pRebase
){
sqlite3_changeset_iter *pIter = 0; /* Iterator opened on pData/nData */
int rc; /* Return code */
rc = sqlite3changeset_start(&pIter, nRebase, (void*)pRebase);
if( rc==SQLITE_OK ){
rc = sessionChangesetToHash(pIter, &p->grp, 1);
}
sqlite3changeset_finalize(pIter);
return rc;
}
/*
** Rebase a changeset according to current rebaser configuration
*/
int sqlite3rebaser_rebase(
sqlite3_rebaser *p,
int nIn, const void *pIn,
int *pnOut, void **ppOut
){
sqlite3_changeset_iter *pIter = 0; /* Iterator to skip through input */
int rc = sqlite3changeset_start(&pIter, nIn, (void*)pIn);
if( rc==SQLITE_OK ){
rc = sessionRebase(p, pIter, 0, 0, pnOut, ppOut);
sqlite3changeset_finalize(pIter);
}
return rc;
}
/*
** Rebase a changeset according to current rebaser configuration
*/
int sqlite3rebaser_rebase_strm(
sqlite3_rebaser *p,
int (*xInput)(void *pIn, void *pData, int *pnData),
void *pIn,
int (*xOutput)(void *pOut, const void *pData, int nData),
void *pOut
){
sqlite3_changeset_iter *pIter = 0; /* Iterator to skip through input */
int rc = sqlite3changeset_start_strm(&pIter, xInput, pIn);
if( rc==SQLITE_OK ){
rc = sessionRebase(p, pIter, xOutput, pOut, 0, 0);
sqlite3changeset_finalize(pIter);
}
return rc;
}
/*
** Destroy a rebaser object
*/
void sqlite3rebaser_delete(sqlite3_rebaser *p){
if( p ){
sessionDeleteTable(0, p->grp.pList);
sqlite3_free(p);
}
}
/*
** Global configuration
*/
int sqlite3session_config(int op, void *pArg){
int rc = SQLITE_OK;
switch( op ){
case SQLITE_SESSION_CONFIG_STRMSIZE: {
int *pInt = (int*)pArg;
if( *pInt>0 ){
sessions_strm_chunk_size = *pInt;
}
*pInt = sessions_strm_chunk_size;
break;
}
default:
rc = SQLITE_MISUSE;
break;
}
return rc;
}
#endif /* SQLITE_ENABLE_SESSION && SQLITE_ENABLE_PREUPDATE_HOOK */